Bioformulation in biological control for plant diseases- A Review

International Journal of Biotech Trends and Technology (IJBTT)
© 2017 by IJBTT Journal
Volume - 7 Issue - 3                          
Year of Publication : 2017
Authors : Prathap.M. Ranjitha Kumari. B.D
DOI :  10.14445/22490183/IJBTT-V22P601


Prathap.M. Ranjitha Kumari. B.D "Bioformulation in biological control for plant diseases- A Review", International Journal of Biotech Trends and Technology (IJBTT), V7(3): 1-8 Jul - Sep 2017, Published by Seventh Sense Research Group.


Bioformulation for plant growth promotion continue to inspire research and development in many fields. Increase in soil fertility, plant growth promotion, and suppression of phytopathogens are the targets of the bioformulation industry that leads to the development of ecofriendly environment. The rhizosphere bacteria have immense application in sustainable agriculture as ecofriendly biofertilizer and biopesticides. Intensive commercial farming involves excessive use of chemical fertilizers and pesticides. It is feared that practice of using chemical fertilizers and pesticides continually would result in gradual aggravation of soil fertility. The aim of the review is to assess the biologically control of plant pathogens in with the effective development of bioinoculant industry.


1. Dutta, B.K., 1981. Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for the control of Verticillium wilt. Plant Soil 63, 209-216.
2. Papavizas, G.O., 1995. Trichoderma biology, ecology and potential for biocontrol. Ann. Rev. Phytopathol 23, 28-54.
3. Matta, A., Garibadli, A., 1997. Control of Verticillium wilt of tomato by pre-inoculation with avirulent fungi. Eur. J. Plant Pathol. 83, 457-462.
4. Menendez, A.B., Godeas, A., 1998. Biological control of Sclerotinia sclerotiorum attacking soybean plants: degradation of the cell wall of this pathogen by Trichoderma harzianum . Mycopathology 142, 153-160.
5. Adebanjo, A., Bankole, S.A., 2004. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea. J. Basic Microbiol. 44, 3-9.
6. Eziashi, E.L., Uma, N.U., Adekunle, A.A., Ariede, C.E., 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. Afr. J. Biotechnol. 5, 703-706.
7. Naraghi, L., Heydari, A., Ershad, D., 2006. Sporulation and survival of Talaromyces flavus on different plant material residues for biological control of cotton wilt caused by Verticillium dahlia. Iran J. Plant 42, 381-397.
8. Naraghi, L., Zareh-Maivan, H., Heydari, A., Afshari-Azad, H., 2007. Investigation of the effect of heating, vesicular arbuscular mycorrhiza and thermophilic fungus on cotton wilt disease. Pak J. Biol. Sci. 10, 1596-1603.
9. Gentili, A., Mariotti, E., Vincenzi, A., Mazzaglia, A., Heydari, A., Schaad, N.W., Varvaro, L., Balestra, G.M., 2008. Dieback (Moria) of hazelnut: isolation and characterization of two potential biocontrol agents. J. Plant Pathol. 90,383-386.
10. Jahanifar, H., Heydari, A., Hassanzadeh, N., Zamanizadeh, H.R., Rezaee, S., Naraghi, L., 2008. A comparison between antibiotic-resistant mutants of antagonistic bacteria and their wild types in biological control of cotton seedling damping-off disease. J. Biol. Sci. 8, 914- 919.
11. Heydari, A., Pessarakli, M., 2010. A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci. 10, 273-290.
12. Gerami, E., Hassanzadeh, N., Abdollahi, H., Ghasemi, A., Heydari, A., 2013. Evaluation of some bacterial antagonists for biological control of fire blight disease. J. Plant Pathol. 95, 127- 134.
13. Weller, D.M., 1991. Biological control of soil-born plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathology. 26, 379-407.
14. Ambang, Z., Ndongo, B., Bime, Ngoh, D., Maho, Y., Ntsomboh, G., 2008. Effect of mycorrhizal inoculum and urea fertilizer on diseases development and yield of groundnut crops (Arachis hypogaea L.). Afr. J. Biotechnol. 7 (16), 2823-2827.
15. Ozgonen, H., Akgul, D.S., Erkilic, A., 2010. The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut. Afr. J. Agric.Res. 5 (2), 128- 132.
16. Ika, R.S., Syamsuddin, D., Nasir, S., Anton, M., 2011. Control of damping off ”diseasecaused by Sclerotium rolfsii Sacc. using actinomycetes and VAM fungi on soy-bean in the dry land based on microorganism diversity of rhizosphere zone. Agrivita 33 (1), 40-46.
17. Rakh, R.R., Raut, L.S., Dalvi1, S.M., Manwar, A.V., 2011. Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Rec. Res.Sci. Tech. 3, 26 -34.
18. Lopes RB, Martins I, Souza DA, Faria M. Influence of some parameters on the germination assessment of mycopesticides. J Invertebr Pathol. 2013; 112(3):236-242.
19. Nussenbaum AL, Lewylle MA, Lecuona RE. Germination, Radial Growth and Virulence to Boll Weevil of Entomopathogenic Fungi at Different Temperatures. World Appl Sci J. 2013; 25(8):1134-1140.
20. Borisade OA, Magan N. Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Sci Technol. 2014; 24(9):999-1011.
21. Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, et al. Lethal and pre-Lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria Vectors. Plos One. 2011; 6(8):e23591.
22. Zahran HEDM, Kawanna MA, Bosly HA.Larvicidal Activity and Joint Action Toxicity of Certain Combating Agents on Culex pipiens L. Mosquitoes. Ann Rev Res Biol. 2013; 3(4):1055-106.
23. Borges LR, Vila Nova MX. Association of chemical insecticides and entomopathogenic fungi in Integrated Pest Management – a review. Ambiência. 2011; 7(1):179–190.
24. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, et al. Exposure to sublethal doses of Fipronil and hiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae.Plos One. 2011; 6(6):e21550.
25. Rabindran R, Vidhyasekharan P. 1996. Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protection 15:715–721.
26. Vidhyasekaran P, Sethuraman K, Rajappan K, Vasumathi K. 1997a. Powder formulations of Pseudomonas fluorescens to control pigeon pea wilt. Biological Control 8:166–171.
27. Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K. 1997b.
Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology 46: 291– 297.
28. R. Viswanathan and R. Samiyappan (2008) Bio-formulation of fluorescent Pseudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane, Archives Of Phytopathology And Plant Protection, 41:5, 377-388.
29. G.Chakravarty and M.C.Kalita (2011) Management of bacterial wilt of brinjal by Pseudomonas fluorescens based bioformulation. ARPN Journal of Agricultural and Biological Science. 6(3), 1-11.
30. Ramesh R, Joshi A.A and Ghanekar M.P. 2008. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology. 25(1): 47-55.
31. Tondje,P.R.,Roberts,D.P.,Bon,M.C.,Widmer,T.,Samuels,G.J.,Is maiel,A.,Begoude,A.D. Tchana, T., Nyemb- Tshomb, E., Ndoumbe-Nkeng, M., Bateman, R.P., Fontem, D., Hebbar, K.P., 2007. Isolation and identi fi cation of mycoparasitic isolates of Tricho- derma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol. Control 43, 202- 212.
32. Deberdt, P., Mfegue, C.V., Tondjé, P.R., Bon, M.C., Cucamp, M., Hurard, C., Begoude, B.A.D., Ndoume-Nkeng, M., Helbar, P.K., Cilas, C., 2008. Impact of environmental factors. Fungicides and biological control on cocoa pod on cocoa pod production dynamics and black pod diseases (Phytophthora megakarya ) in Cameroon. Biol. Control 44, 149-159.
33. Pedro Ulises Bautista-Rosales, Montserrat Calderon- Santoyo,Rosalía Servín-Villegas, Norma Angélica OchoaÁlvarez , Juan Arturo Ragazzo-Sánchez (2013) Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control 65,293–301.
34. S.S. Ardakani, A. Heydari, N. Khorasani and R. Arjmandi (2010) Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against dampingoff of cotton seedlings. Journal of Plant Pathology.92 (1), 83-88.
35. Heydari A., Misaghi I.J., 1998. The impact of herbicides on the incidence and development of Rhizoctonia solani induced cotton seedling damping-off.Plant Disease 82: 110-113.
36. Heydari A., Misaghi I.J., 2003. The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani induced cotton seedling damping-off.Plant and Soil 257:391-396.
37. Bharathi R., Vivekananthan R., Harish S., Ramanathan A.,Samiyappan R., 2004. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chilies.Crop Protection23: 835-843.
38. Heydari A., Gharedaghli A., 2007. Integrated Pest Management on Cotton in Asia and North Africa. INCANA Press,Tehran, Iran.
39. Aeron, A., R.C. Dubey, D.K. Maheshwari, P. Pandey, V.K. Bajpai and S.C. Kang: (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur.J. Pl. Pathol. 131, 81-93.
40. P.P.Jambhulkar and P. Sharma (2014) Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae). Journal of Environmental Biology, 35, 843- 849.
41. Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525.
42. Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotech Adv 6:729–770.
43. Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coating. Biocontrol Sci Technol 7:65–74.
44. Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40:34–39.
45. Saha AK, Deshpande MV, Kapadnis BP (2001) Studies on survival of Rhizobium in the carriers at different temperatures using green fluorescent protein marker. Curr Sci 80(5):669–671.
46. Duffy BK, De´fago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438.
47. Bell A, Hubbard JC, Liu L, Davis RM, Subbarao KV (1998) Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Dis 82:322–328.
48. Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogea L.) with chitinolytic bacteria. Phytopathology 95:1157–1165.
49. Raj NS, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper WJ (2003). Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protection 22:579-588.
50. Chuaboon W, Prathuangwong S (2007). Biological control of cauliflower soft rot using bacterial antagonist and its risk assessment. J. Thai Phytopathol. 21:63-48.
51. Prathuangwong S, Chuaboon W, Kasem S, Hiromitsu N, Suyama K (2007). Formulation development of Pseudomonas fluorescens SP007s to control Chinese kale diseases in farming production. Abstract of paper. In: Proceedings of the ISSAAS Int. Cong. Agriculture Is a Business, Dec 12 -14, Melaka, 58.
52. Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) . Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Protection 21:671–677.
53. Cook RJ (2002). Advances in plant health management in the twentieth century. Annu. Rev. Phytopathol. 38:95-116.
54. Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004). Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Protection 23:835-843.
55. Chaluvaraju G, Basavaraju P, Shetty NP, Deepak SA, Amruthesh KN, Shetty HS (2004). Effect of some phosphorous based compounds on control of pearl millet downy mildew disease. Crop Protection 23:595-600.
56. Anitha A, Rabeeth M (2009). Control of fusarium wilt of tomato by bioformulation of Streptomyces griseus in green house condition. Afr. J. Basic Appl. Sci. 1(1-2):9-14.
57. Chen XH, Scholz R, Borriss M, Junge H, MÖgeI G, Kunz S, Borriss R (2009). Difficidin and bacilysin produced by plantassociated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotech. 140(1-2):38-44.
58. Ardakani SS, Heydari A, Khorasani N, Arjmandi R (2010). Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against dampingoff cotton seedlings. J. Plant Pathol. 92(1):83-88.
59. Ardakani SS, Heydari A, Tayebi L, Cheraghi M (2011). Evaluation of efficacy of new bioformulations on promotion of cotton seedlings. Environ. Sci. Technol.6:361-364.
60. Haggag M, Wafaa SS (2012). Development and production of formulations of PGPR cells for control of leather fruit rot disease of strawberry. Am. J. Sci. Res. 67:16-22.
61. Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94 (11):1267-1271.
62. Sharathchandra RG, Raj NS, Shetty NP, Amruthesh KN, Shetty SH (2004). A Chitosan formulation Elexat induces downy mildew disease resistance and growth promotion in pearl millet. Crop Protection 23: 881-888.
63. Amran M (2006). B iomass production and formulation Bacillus subtilis for biological control. Inidonesian J. Agri. Sci. 7(2):51- 56.
64. Pushpalatha HG, Mythrashree SR, Shetty R, Geetha NP, Sharathchandra RG, Amruthesh KN, ShettySH (2007). Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Protection 26:1674- 1681.
65. Preecha C, Prathuangwong S (2009). Development of Bacillus amyloliquefaciens KPS46 formulation for control of soybean disease. Abstract of paper. In:Proceedings of the ISSAAS Int.Conf., Feb 23-27, Bangkok,222.
66. Omer MA (2010). Bioformulations of Bacillus spores for using as Biofertilizer. Life Sci. J. 7:4.
67. Senthilraja G, Anand T, Durairaj C, Raguchander T, Samiyappan R (2010). Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leafminor and collar rot in groundnut. Crop Protection 29:1003-1010.
68. Siripornvisal S, Trilux S (2011). Effect of a bioformulation containing Bacillus subtilis BCB3-19 on early growth of hongtae pak choi. Agri. Sci. J. 42(2):293-296.
69. Agrawal Pushpa, Pandey Subhash C. and Manjunatha Reddy A.H. (2014) Development of liquid formulation for the Dual purpose of crop protection and Production Journal of Environmental Research and Development. 8(3):378-383.
70. Chakraborty U, Chakraborty B N, Chakraborty AP, Sunar K and Dey PL (2013) Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Indian Journal of Biotechnology.12 (1):20-31.
71. Bashan Y, Inoculants of plant growth promoting rhizobacteria for use in agriculture, Biotechnol Adv, 16 (1998) 729-770.
72. El-Hassan S A & Gowen S R, Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis, J Phytopathol, 154 (2006) 148-155.
73. Trivedi P, Pandey A & Palni L M S, Carrier-based preparations of plant growth promoting bacterial inoculants suitable for use in cooler regions, World J Microbiol Biotechnol, 21 (2005) 941- 945.
74. Suriyaprabha Rangaraj, Karunakaran Gopalu, Prabhu Muthusamy, Yuvakkumar Rathinam, Rajendran Venkatachalam and Kannan Narayanasamy (2014). Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv.4, 8461–8465.
75. Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol .38, 485–492.
76. Rzewnicki P (2000) Ohio organic producers: final survey results. Online. Ohio State University Extention, College of Food Agricultural and Environmental Sciences, Bulletin, Special Circular, 174.
77. Validov S, Kamilova F, Qi S, Stephen D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. Radicus-lycopersici in stone substrate. J Appl Microbiol 102:461–471.
78. Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48:6–11.
79. Fages J (1992) An industrial view of Azospirillum inoculants formulation and application technology. Symbiosis 13:15–26.
80. Garci ´a de Castro A, Lapinski J, Tunnacliffe A (2000) Anhydrobiotic engineering. Nat Biotechnol 18:473.
81. Bharat C. Nath, L.C. Bora, L. Kataki, K. Talukdar, P. Sharma, J. Dutta and P. Khan (2016). Plant Growth Promoting Microbes, their Compatibility Analysis and Utility in Biointensive Management of Bacterial Wilt of Tomato. Int.J.Curr.Microbiol.App.Sci 5, 1007-1016.
82. Cook, R.J., and Baker, K.F. (1983). The Nature and Practice of Biological Control of Plant Pathogens. (St. Paul, MN: APS Press 281 pp).
83. Francisco D.H., Angelica M.P., Gabriel M., Melchor C.S., Raul R., Cristobal N., Francisco C.R. (2011). In vitro antagonist action of Trichoderma strains against Sclerotium sclerotiorum and Sclerotium cepivorum. American Journal of Agriculture Biology Science 6 (3), 410–417.
84. Govind Gupta, Shailendra Singh Parihar, Narendra Kumar Ahirwar, Sunil Kumar Snehi and Vinod Singh (2015). Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J. Microb. Biochem. Technol. 7, 96-102.
85. Heydari A, Pessarakli M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10, 272-290.
86. Kakvan N, Heydari A, Zamanizadeh HR, Rezaee S, Nraghi L.(2013). Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot 53, 80-84.
87. Leta A, Selvaraj TH.(2013). Evaluation of Arbuscular mycorrizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). Plant Patho Microbiol 14, 1-6.
88. Malleswari Damam, Bagyanarayana Gaddam and Rana Kausar (2015).Bio-Management of Root-Rot Disease Caused by Macrophomina phaseolina in Coleus forskohlii. IJPPR. 7, 347- 352.
89. Metcalf DA, Dennis JJC, Wilson CR. (2004). Effect of inoculum density of Sclerotium cepivorum on the ability of Trichoderma koningii to suppress white rot of onion. Plant Dis 88, 287-291.
90. Naraghi L, Heydari A, Rezaee S, Razavi M. (2013). Study on some antagonistic mechanisms of Talaromyces flavus against Verticillium dahliae and Verticillium albo-atrum, the causal agents of wilt disease in several important crops. Biocont Plant Prot 1,13-28.
91. Razak Mahdizadehnaraghi, Asghar Heydari, Hamid Reza Zamanizadeh, Saeed Rezaee, Jafar Nikan (2015).Promotion of Garlic Growth Characteristics Using Bioformulations Developed Based on Antagonistic Fungi. Intl. J. Agri. Crop Sci. 8, 654-658.
92. Suárez-Estrella, F., Vargas-García, C., López, M.J., Capel, C., Moreno, J., 2007.Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot., 46–53.
93. El-Hasan, A., Walker, F., Buchenauer, H., 2006. Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J. Phytopathol. 156, 79–87.
94. Gava, C.A.T., Menezes, M.E.L., 2012. Efficiency of Trichoderma spp isolates on the control of soil-borne pathogens yellow melon in field conditions. Rev. Ciência Agronômica 43, 633–640.
95. Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M., 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8, 71–126.
96. Shahid, M., Srivastava, M., Pandey, S., Singh, A., Kumar, V., Srivastava, Y., 2014. Biocontrol mechanisms by Trichoderma through genomics and proteomics analysis: a review. Afr. J. Microbiol. Res. 8, 3064–3069.
97. Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56.
98. Reino, J.L., Guerrero, R.F., Hernández-Galán, R., Collado, I.G., 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7, 89–123.
99. Fravel, D.R., 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43, 337–359.
100. Martínez-Medina, A., Pascual, J.A., Perez-Alfocea, L.F., Roldán, A., 2010. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100, 682–688.
101. Yedidia, I., Shoresh, M., Kerem, Benhamou, N., Kapulnik, Y., Chet, I., 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (t-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69, 7343–7353.

carrier based bioformulation, growth promotion, biocontrol, biofertilizer, rhizosphere bacteria, plant pathogens.