A Comprehensive Review on Molecular Approaches for Enhancement of Bacterial Cellulase Production

International Journal of Biotech Trends and Technology (IJBTT)
© 2018 by IJBTT Journal
Volume - 8 Issue - 3                          
Year of Publication : 2018
Authors : Asha BM, Ananda Vardhan Hebbani, Nida Afshan Khan, Sharon Evelin


MLA Style: Asha BM, Ananda Vardhan Hebbani, Nida Afshan Khan, Sharon Evelin "A Comprehensive Review on Molecular Approaches for Enhancement of Bacterial Cellulase Production" International Journal of Biotech Trends and Technology 8.3 (2018): 6-11.

APA Style: Asha BM, Ananda Vardhan Hebbani, Nida Afshan Khan, Sharon Evelin, (2018). A Comprehensive Review on Molecular Approaches for Enhancement of Bacterial Cellulase Production. International Journal of Biotech Trends and Technology, 8(3), 6-11.


Cellulases are the largest class of industrial enzymes produced worldwide because of their potential applications in cotton processing, paper recycling, juice extraction, detergent formulation, animal feed additives and their established uses in agricultural biotechnology and bioenergy production. Though many attempts have happened in the past few decades attempting to enhance the production and activity of cellulases by non molecular approaches (like Optimization of fermentative conditions and strain improvements) which are understood to have limited range of applications; molecular approaches have proved to be the best solution for many limitations faced by the other Biotechnological methods. The present review is an attempt to depict the recent advancements in the molecular approaches used to enhance the production of Bacterial cellulases.


[1] Bhat MK and Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv, vol. 15(3-4), pp. 583-620, 1997.
[2] Immanuel G, Dhanusa R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coirretting effluents of estuarine environment. Int J Environ Sci Technol, vol. 3(1), pp. 25-34, 2006.
[3] Bhat MK. Cellulase and related enzymes in Biotechnology. Biotechnol Adv, vol. 18(5), pp. 355-383, 2000.
[4] Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases production, applications and challenges. J Sci Ind Res, vol. 64(1), pp. 832-844, 2005.
[5] Singh A, Kuhad RC, Ward OP. Industrial application of microbial cellulases in Lignocellulose Biotechnologgy:Future Prospects, R. C. Kuhad and A. Singh, Eds, I.K.International Publishing House, New Delhi, India, pp. 345-358, 2007.
[6] Karmakar M, Ray RR. Current trends in research and application of microbial cellulases. Res J Microbiol, vol. 6(1), pp. 41-53, 2011.
[7] Cho KM, Hong SJ, Math RK, Islam SM, Kim JO, Lee YH, Kim H, Yun HD. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A. J Basic Microbiol, vol. 48(6), pp. 464-72, 2008.
[8] Dwyer MA, Looger LL, Hellinga HW. Computational design of a biologically active enzyme. Science, vol. 304(5679), pp. 1967-1971, 2004.
[9] Ozaki K, Sumitomo N, Hayashi Y, Kawai S, Ito S. Site-directed mutagenesis of the putative active site of endoglucanase K from Bacillus sp. KSM-330. Biochimica Biophysica Acta, vol. 1207(2), pp. 159-164, 1994.
[10] Rignall TR, Baker JO,1 McCarter SL, Adney WS, Vinzant TB, Decker SR, Himmel ME. Effect of single active-site cleft mutation on product specificity in a thermostable bacterial cellulase. Appl Biochem Biotechnol, vol. 98(1-9), pp. 383-394, 2002.
[11] Murashima K, Kosugi A, Doi RH. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol, vol. 45(3), pp. 617-626, 2005.
[12] Mahadevan SA, Wi SG, Lee DS, Bae HJ. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett, vol. 287(2), pp. 205-211, 2008.
[13] Zhang S, Diana C, Irwin, Wilson DB. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6. B. Eur J Biochem, vol. 267(11), pp. 3101-3115, 2000.
[14] Cockburn DW, Clarke AJ. Modulating the pH-activity profile of cellulase A from Cellulomonas fimi by replacement of surface residues. Protein Engineering Design and Selection, vol. 24(5), pp. 429-437, 2011.
[15] Lim WJ, Hong SY, An CL, Cho KM, Choi BR, Kim YK, An JM, Kang JM, Lee SM, Cho SJ, Kim H, Yun HD. Construction of minimum size cellulase (Cel5Z) from Pectobacterium chrysanthemi PY35 by removal of the C-terminal region. Appl Microbiology and Biotechnology, vol. 68(1), pp. 46-52, 2005.
[16] Rajoka MI. Regulation of synthesis of endo-xylanase and β-xylosidase in Cellulomonas flavigena: a Kinetic study. World J Microbiol Biotechnol, vol. 21(4), pp. 463-469, 2005.
[17] Park SR, Cho SJ, Kim MK, Ryu SK, Lim WJ, An CL, Hong SY, Kim JH, Kim H, Yun HD. Activity enhancement of Cel5Z from Pectobacterium chrysanthemi PY35 by removing C-terminal region. Biochem Biophys Res Commun, vol. 291(2), pp. 425-430, 2002.
[18] Cadena MC, Ramos GG, Peimbert M, Polaina J, Hernandez GP, Zubillaga RA. Additive effect of single amino acid replacements on the kinetic stability of β-glucosidase, B. Protein J, vol. 31(7), pp. 615-622, 2012.
[19] Srikrishnan S, Randall A, Baldi P, Da Silva NA. Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Biotechnol Bioeng, vol. 109(6), pp. 1595-1599, 2012.
[20] Shim JH, Wither SG. Improvement of expression level of β-glucosidase from Agarobacterium sp in Escherichia coli by rare codon optimization. Food Sci and Biotechnol, vol. 22(1), pp. 269-273, 2013.
[21] Baljit K,Oberoi HS, Chadha BS. Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresour Technol., vol. 156, pp. 100-107, 2014.
[22] Zhiyou Z, Le G, Wensheng C, Liang Y, Chao C, Shulin C, Donhyuan Z. Computer-assisted Rational modifications to improve the thermostability of β-Glucosidase from Penicilliumpiceum H16. Bioenergy Res, vol. 8(3), pp. 1384-1390, 2015.
[23] Jinfeng Z,Hao S,Linyu X,Xiaoyan Z,Xiangqian L. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima based on rational design. PloS one, vol. 10(7):e0133824, 2015.
[24] Hibbert EG, Baganz F, Hailes HC, Ward JM, Lye GJ, Woodley JM, Dalby PA. Directed evolution of biocatalytic processes. Biomol Eng, vol. 22(1-3), pp. 11-19, 2005.
[25] Kim YS, Jung HC, Pan JG. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol, vol. 66(2), pp. 788-93, 2000.
[26] Kim YW, Lee SS, Warren RA, Withers SG. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J Biol Chem, vol. 279(41), pp. 42787-42793, 2004.
[27] Lin L, Meng X, Liu P, Hong Y, Wu G, Huang X, Li C, Dong J, Xio L, Liu Z. Improved catalytic efficiency of Endo-β-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biotechnol, vol. 82(4), pp. 671-679, 2009.
[28] Lebbink JH, Kaper T, Bron P, van der Oost J, de Vos WM. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, vol. 39(13), pp. 3656–3665, 2000.
[29] Arrizubieta MJ, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. J Biol Chem, vol. 275(37), pp. 28843-28848, 2000.
[30] Pei XQ, Yi ZL, Tang CG, Wu ZL. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresour Technol, vol. 102(3), pp. 3337-3342, 2011.
[31] Sajjad A, Hui M, Muhammad WA, Yi-Heng PZ, Xiao-Zhoa Z. Directed Evolution of Clostridium phytofermentans Glycoside Hydrolase Family 9 Endonuclease for Enhanced Specific Activity on Cellulase Solid Substrate. Bioenergy Res, vol. 7(1), pp. 381-388, 2014.
[32] Harshal AC,Christine MR,TaeWan K,Meera EA,Neeraja V,Craig MD,Harvey WB,Douglas SC. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol, vol. 15(1), pp. 11, 2015.
[33] Beguin. P. Molecular biology of cellulose degradation. Annu Rev Microbiol, vol. 44(1), pp. 219-248, 1990.
[34] Sashihara N, Kudo T, Horikoshi K. Molecular cloning and expression of cellulase genes of alkalophilic Bacillus sp. strain N4 in Escherichia coli. J Bacteriol, vol. 158(2), pp. 503-506, 1984.
[35] Kim H, Pack MY. Endo-β-1,4-glucanase encoded by Bacillus subtilis gene cloned in Bacillus megaterium. Enzyme Microb Tech, vol. 10(6), pp. 347-351, 1988.
[36] Lejeun A, Eveleigh DE, Colson C. Expression of an endoglucanase gene of Pseudomonas fluorescens var. cellulosa in Zymomonasmobilis. FEMS Microbiol Lett, vol. 49(3), pp. 363-366, 1988.
[37] Curry C, Gilkes N, O’Neill G, Miller RC, Skipper N. Expression and secretion of a Cellulomonas fimi exoglucanase in Saccharomycescerevisiae.Appl Environ Microbiol, vol. 54(2), pp. 476-484, 1988.
[38] Goachet BN, Gunasekaran P, Cami B, Baratti JC. Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J Gen Microbiol, vol. 135(4), pp. 893-902, 1989.
[39] Baird SD, Johns SA, Seligy VL. Molecular cloning, expression, and characterization of endo-β-1,4-glucanase genes from Bacillus polymyxa and Bacillus circulans. J Bacteriol, vol. 172(3), pp. 1576-1586, 1990.
[40] Jorgensen PL, Hansen C. Multiple endo-beta-1,4-glucanase-encoding genes from Bacillus latus PL236 and characterization of the celB gene.Gene, vol. 93(1), pp. 55-60, 1990.
[41] Ozaki K, Sumitoma N, Ito S. Molecular cloning and nucleotide sequence of a gene encoding endo1,4-β glucanase from Bacillus sp KSM-330.J Gen Microbiol, vol. 137(10), pp. 2299-2305, 1991.
[42] Baek SJ, Jung KH, Kim H, Kim SF. Expression and secretion of carboxymethyl cellulase in Bacillus subtilis by Lactobacillus casei lactate dehydrogenase gene promoter. Biotechnol Lett, vol. 19(1), pp. 27-29, 1997.
[43] Blanco A, Diaz P, Martinez J, Vidal T, Torres AL, Pastor FI.Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol, vol. 50(1), pp. 48-54, 1998.
[44] Srivastava KK, Verma PK, Srivastava R. A recombinant cellulolytic Escherichia coli: Cloning of the cellulase gene and characterization of a bifunctional cellulase. Biotechnol Lett, vol. 21(4), pp. 293-297, 1999.
[45] Lima AO, Quecine CM, Fungaro MH, Andreote FD, Maccheroni WJ, Araujo WL, Silva-Filho CL, Pizzirani-Kleiner AA, Azevedo JL.Molecular characterization of a β-1,4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol, vol. 68(1), pp. 57-65, 2005.
[46] Rajoka MI, Bashir A, Hussein SRA, Gauri MT, Parvez S, Malik KA. Cloning and expression of β-glucosidase genes in Escherichiacoli and Saccharomyces cerevisiae using shuttle vector pYES 2.0.FoliaMicrobiol, vol. 43(2), pp. 129-135, 1998.
[47] Pastor FI, Pujol X, Blanco A, Vidal T, Torres AL, Diaz P. Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp. BP-23: Evaluation of its performance in pulp refining. Appl Microbiol Biotechnol, vol. 55(1), pp. 61-68, 2001.
[48] Zhou S, Davis FC, Ingram LO. Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol, vol. 67(1), pp. 6-14, 2001.
[49] Eckert E, Zielenski F, Leggio LL, Schneider E. Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbio Biotechnol, vol. 60(4), pp. 428-436, 2002.
[50] Eckert K, Schneider E. A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem, vol. 270(17), pp. 3593-3602, 2003.
[51] Parvez S, Mukhtar Z, Rashid F, Rajoka MI. Biolistic transformation of Saccharomyces cerevisiae with β-glucosidase gene from Cellulomonas biazotea. African J Biotechnol, vol. 3(1), pp. 112-115, 2003.
[52] Gutirrez-Nava A, Herrera-Herrera A, Mayorga-Reyes L, Salgado LM , Ponce-Noyola T. Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-beta-1,4-glucanase. Curr Microbiol, vol. 47(5), pp. 359-363, 2003.
[53] Sanchez MM, Pastor FIJ, Diaz P. Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23 A unique type of cellulase among Bacillales. Eur J Biochem, vol. 270(13), pp. 2913-2919, 2003.
[54] Y, Zhang J, Liu Q, Zhang C, Ma Q. Molecular cloning of novel cellulase genes cel9A and cel12A from Bacillus licheniformis GXN151 and synergism of their encoded polypeptides. Curr Microbiol, vol. 49(4), pp. 234-238, 2004.
[55] Woo SM, Kim SD. Cloning of the cellulase gene and characterization of the enzyme from a plant growth promoting Rhizobacterium, Bacillus licheniformis K11. J Korean Soc Appl Biol Chem, vol. 50(2), pp. 95-100, 2007.
[56] Li W, Zhang WW, Yang MM, Chen YL. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol, vol. 40(2), pp. 195-201, 2008.
[57] Yang D, Haibo W, Minge W, Weihua X, Yaozhao L, Huiling Y. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep, vol. 37(4), pp. 1923-1929, 2010.
[58] Linger JG, Adney WS, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol, vol. 76(19), pp. 6360-6369, 2010.
[59] Fu X, Liu P, Lin L. A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14.Appl Biochem Biotechnol, vol. 160(6), pp. 1627-1636, 2010.
[60] Anthi CK,Evangelos T,Paul C. Cloning,expression,and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol and Biotechnol, vol. 98(1), pp. 231-242, 2014.
[61] Muddassar Z,Sibtain A,Muhammad I,Mahmood K,Amer J. Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli. Mol Biol Rep, vol. 41(5), pp. 3295-3302, 2014.
[62] Sangeeta P, Jyoti K,Rameshwar T, RamK,Vishal Singh S, Lata N, Anil KS. Cloning and expression of β-1, 4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbial Res, vol. 169 (9-10), pp. 693-698, 2014.
[63] Hui W, Wei W, Markus A, Todd VW, John OB, Larry ET, Stephen RD, Michael EH, Min Z. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing. Biotechnol for Biofuels, vol. 7(1), pp. 148, 2014.
[64] Yi-Rui Y, Feng Z, Qing-Wen H, Wen-Dong X, Wael NH, En-Min Z, Hong M, Guo-Xing N, Wen-Jun L. Heterologous expression and characterization of a novel halotolerant, thermostable, and alkali-stable GH6 endoglucanase from Thermobifida halotolerans. Biotechnol Lett, vol. 37(4), pp. 857-862, 2015.
[65] Hena D, Ramesh CK, Som D, Arvind G. Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int J Biol Macromol, vol. 81, pp. 259-266, 2015.
[66] Kelvin SCW, Teow CT, Philip K, Ismail S, Arifin Z. Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electron J Biotechnol, vol. 18(2), pp. 103-109, 2015.
[67] Ikram UH, Fatima A, Mahmood, AK, Zahid H, Ali N, Kaleem I, Ali JS. CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. World J Microbiol Biotechnol, vol. 31(11), pp. 1699-1710, 2015.
[68] Sung CK, Seung HK, Eun YC, Yeon HH, Jin DB, Jae YK, Sang SL, Yun JC, In SC, Kwang KC. Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40. Asian-Australasians J Anim Sci, vol. 29(1), pp. 126, 2016.

Bacterial cellulases, molecular approaches, rational design