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Abstract — The pulse transit time (PTT) is commonly used 

to monitor pulse wave velocity (PWV). In general, the 

instruments of signal acquisition, from which these 

physiological variables are estimated, require a contact 
surface for the sensors' installation and positioning, such as 

an inflatable cuff, creating a restriction or obstruction to the 

users' movement and ergonomics. This paper describes the 

development and evaluation of a contactless cardiovascular 

monitor, which can measure the PTT and PWV by analyzing 

the photoplethysmographic (PPG) signal obtained by an 

RGB camera's green channel, i.e., without using sensors in 

contact with the skin. This monitor requires the PPG signal 

acquisition of two different regions of interest 

simultaneously: the forehead and right-hand palm. The time 

differences between two critical points of PPG signals were 

used to input machine learning algorithms, alongside other 
input features, such as user’s gender, height, and weight, to 

estimate Aortic PTT. The proposed monitor was tested by 

comparing its measurements of 36 healthy volunteers to the 

CARDIOS Dyna-MAPA+, gold standard equipment for 

these physiological variables measurement, showing a 

Pearson correlation coefficient of approximately 0.77 and a 

mean squared error of 0.104×10-3 for Aortic PTT. 

Keywords — Blood Pressure, Camera, Machine Learning, 

Pulse Transit Time, Pulse Wave Velocity, Contactless.  
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I. INTRODUCTION  

Pulse transit time (PTT) is when blood pressure or flow 

wave takes to propagate between two arterial sites [1]. It is 
inversely correlated to pulse wave velocity (PWV) and can 

be measured by the relative timing between proximal and 

distal pulsatile waveforms [2]. PWV refers to the velocity at 

which the pulse wave flows through the blood vessels. Some 

methods used to measure PWV require non-invasive 

instruments that must use an inflatable cuff (auscultation, 

oscillometric, and volume clamping methods, for example) 
attached to the body, making people feel uncomfortable [3]. 

Normally, the acquisition of PTT is made using the moment 

when the R-peak of an electrocardiography (ECG) signal 

occurs when the maximum slope of a PPG occurs [16]. 

However, according to Mukkamla et al. [4], this type of 

acquisition returns the pulse arrival time (PAT), which is 

composed of the sum of the PTT and the pre-ejection period 

(PEP). Studies found that PTT can be measured by the time 

interval between a specific point of two PPG signals 

positioned in two different body sites to avoid PEP [13], 

[24]. Considering that PTT values can be measured using 

two photoplethysmography sensors in different body sites, 
the same approach can be applied using a camera to acquire 

the photoplethysmography signal. In the study developed by 

Khong et al. [14], the chest and forehead were the selected 

body sites, considering the chest as the proximal region or 

the blood pulse origin and the forehead as the distal region. 

However, according to Sugita et al. [9], the pulse time 

difference between the forehead and the right-hand palm 

was the most correlated one compared to the systolic blood 

pressure measured by the reference sensor attached to the 

left middle finger of a person. 

According to McDuff et al. [5][6], it is possible to acquire 

the PPG signal using a digital camera and ambient light, as 

shown in Fig. 1. This contactless technique consists of 

acquiring the PPG signal by detecting the blood volume 

pulse (BVP) variation in the user’s skin, which is caused by 

the heartbeats, through the reflected light in the human skin 

[7][8]. According to Sugita et al. [9], the PTT can also be 
measured by analyzing the PPG signal acquired by a 

contactless technique. The contactless PTT measurement 

allows a way to measure the PWV without wearing an 

inflatable cuff and has a continuous measurement without an 

invasive sensor. It also allows the self-measurement at 

http://ijbttjournal.org/archives/ijbtt-v11i1p602
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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home, avoiding environmental factors that can lead to 

inaccurate results (e.g., white coat effect). 

Studies pointed that self-measurement of physiological 

variables at home with a certain routine is better than 

measuring them at hospitals [10], justifying the attention 

gained from experts to control the progress of diseases, such 

as hypertension [11]. Besides, this technique would also 

allow the external monitoring of a person’s condition, 

exploring the concept of remote sensors and telemedicine 

[12]. 

A video-based photoplethysmography technique was 

developed using two different regions of interest (ROI) 

simultaneously to recover the contactless measurement 

signals. Thus, this paper's main purpose is to propose an 

efficient and flexible software to measure the PTT and PWV 

based on empirical methods. The proposed software uses an 

algorithm to process and analyzes the video, detecting the 
PPG signal's critical points, as shown in Fig. 2. 

 
Figure 1. Contactless PPG signal acquisition. 

 

A smart peak detection algorithm matches the critical points 
created by the same heartbeat in the PPG signals of the two 

ROIs.  

The mean time difference (Δt) only exists because of the 

time delay between two critical points of BVPs, which reach 

the ROIs according to the distance between the heart and 

each ROI. To ensure the best possible results in estimating 
the Aortic PTT values, the tests are performed by including 

seven physiological variables (gender, height, age, weight, 

Body Mass Index (BMI), Body Surface Area (BSA), and Δt) 

as inputs for machine learning techniques, which were 

responsible for estimating the Aortic PTT. 

This paper is organized as follows. In Section 2, the 

proposed technique to acquire the Δt and the environment 

test setup is described. The results for 36 different volunteers 

over a broad range of skin-types, according to the Fitzpatrick 

scale [25], are presented at the end of Section 2. Section 3 

presents the performance of machine learning algorithms to 

evaluate their performance in estimating the Aortic PTT. 

The results comparing the contactless software technique to 

the gold standard equipment for PWV measurement showed 
a high correlation between the PTT and PWV results, 

attesting to the proposed technique's efficiency. Finally, the 

conclusion is presented in Section 4. 

 
Figure 2. The critical point (red O) on PPG signal (a), 

obtained by detecting peaks in the second derivation (b) 

of the PPG signal, is an event that marks the beginning of 

systole (purple O). The beginning of systole is the event 

used to mark the moment that BVP reaches the ROI. 

II. MATERIALS AND METHODS 

A. Mean Time Differences (Δt) Acquisition  

The proposed software performs the video processing and 

the contactless PPG acquisition. The process is described in 
Fig. 3. The ROI was selected into RGB channels, but only 

the green channel was used because its light wavelength is 

absorbed more efficiently by the blood's hemoglobin. The 

BVP peaks are directly related to the hemoglobin content 

[17-19]. The mean of each green channel frame's pixels, on 

both ROIs, was used to form the raw signal x[n].  
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Figure 3. Time intervals between critical points in two 

different ROIs (T). (a) Getting the ROIs within the 

frames; (b) Green channel is selected as the fixed color 

channel; (c) Raw signals (blue signal is the Forehead 

proximal PPG, and the orange signal is the Hand distal 

PPG); the critical point detection in the filtered signals, 

corresponding to the beginning of systole, as shown in 

Figure 2; (d) SmartPeaks Detection Algorithm, as shown 

in Figures 4 and 5; and (e) Δt in seconds (this variable is 

described by Equation 2, as the arithmetic means of T). 

 

Then, a detrending technique filter, based on a smoothness 

priors approach [20-21], filtered x[n], removing the low 

frequencies (< 0.3 Hz), usually caused by the user’s 

movement. After filtering x[n], the raw green channel was 

normalized by subtracting its mean and dividing by its 
standard deviation, as shown in equation (1),  

z[n] = (x[n] – µ) ÷ σ                            (1) 

where µ and σ are the mean and the standard deviation of 

x[n], respectively. 

A 15th order Butterworth bandpass filter was used to filter 

z[n] with the low and high frequency of 0.75 Hz – 4 Hz. It is 
capable of acquiring photoplethysmography signals from 45 

to 240 beats per minute (bpm).  The fixed color technique's 

resulting signal is similar to the photoplethysmography 

signal acquired by a contact PPG sensor; however, this 

signal is the PPG obtained by a contactless technique [26]. 

The signals acquired by the camera were obtained at 30 Hz, 

so a cubic spline interpolation was applied in the signals to 

interpolate them to 500 Hz. A custom peak detection 

algorithm is applied to the filtered z[n] signals, detecting all 

critical points present in both ROIs' PPG signals. 

As shown, two types of filters are used to reduce the noise 

in the PPG signal. However, in some cases, the filters cannot 

remove the noise completely, which might make critical 

point detection more difficult. Then, to avoid the possibility 

of a critical point appears on the signal of an ROI and not on 

the other, due to the noise, the described heuristic in Fig. 4 

was applied to match the critical peaks between these 
signals. For every critical point found on a signal, the 

software searches for a critical point on the other signal, 

between ± 0.05 seconds of the time difference (T). If found, 

the software considers that these critical points correspond to 

the same systole, as shown in Fig. 4, and saves them as an 

element of T to be further the input of equation (2) [14],  

Δt = (|T1| + |T2| + |T3| + … + |TN|) ÷ N           (2) 

where T is the time intervals between the critical points and 

N is the number of valid critical points on ROIs. 

B. Test Environment and Preliminary Results 

The experiment was conducted in a laboratory with a 

controlled environment. The laboratory temperature was set 

to 24°C (75°F), and its luminosity was set to 250 Lux. The 

experiment inclusion and exclusion criteria allowed 36 

different volunteers (17 men and 19 women) to participate. 

According to the Fitzpatrick scale, the volunteers were 19 to 

29 years old, with different skin color types [25]. They were 

seated at approximately 45 cm from the camera. A Logitech, 

Inc. HD Pro Webcam C920 camera was used in the 

experiment with an i7 Intel® CoreTM 8GB RAM computer 
running MATLAB (The Mathworks, Inc.) R2018a software 

on Windows 10 (Ver. 20H2). A 5 minutes video was 

recorded and processed in real-time at 30 frames per second 

(fps) and 800x448 resolution (16:9 Aspect Ratio).  
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Figure 4. Smartpeak detection matching the critical 

correspondent points of different ROIs. The orange line is 

the signal acquired in the Hand, and the blue line is the 

signal acquired in the forehead. In the first plot, the red 

rectangle shows the critical point that does not have a 

correspondent one in the other signal. The green 

rectangle in the second plot shows the invalid critical 

point, which is removed from T. 

During the video recording, the standard gold instrument 

was used to reference the contactless PWV measurements. 

The equipment was the CARDIOS® Dyna-MAPA+, an 

ambulatory blood pressure monitoring with a cuff wrapped 

to the volunteer’s left upper arm to acquire the PWV. 

The contactless PTT measurement technique was 

implemented in MATLAB software, allowing a good 

performance during the signal processing. First, it was 

utilized the Computer Vision System Toolbox to identify and 

track the volunteer’s face. Thus, only the forehead was 
selected to compose the first ROI. The volunteers were asked 

to place their palms in a fixed square drawn on the screen to 

get the second ROI. 

 

Figure 5. SmartPeaks Detection Algorithm is responsible 

for matching the critical points. 

Before starting the contactless measurement using the 
camera, the volunteers wore the Dyna-MAPA+ inflatable 

cuff on the left arm. To avoid noise caused by movements, 

they were asked to sit still, place the head and the right arm 

in custom bracing, and look at the camera while the video 

was being recorded and analyzed simultaneously. Fig. 6 

shows an example of the experiment setup. The files 

containing the results were analyzed after the video 

recording. The Dyna-MAPA+ gave the reference Aortic 

PTT, and its results were compared to the PTT values 

obtained by the camera once the process was done with all 

volunteers. 

The mean time difference (Δt) was used as input of 

machine learning algorithms, alongside other input features, 

such as user’s height and weight, to estimate the contactless 

Aortic PTT. Table I and Table II show results. 

1. Input: The PPG signals of Forehead and Hand 

ppg_Forehead = mean(green_pixels(roiForehead)); 

ppg_Hand = mean(green_pixels(roiHand)); 

2. Initialization phase:  

a) All PPG critical points are selected on both ROIs, 

including the unpaired ones (Fig. 4 – Red rectangle) 

[pF, lF] = findpeaks(ppg_Forehead);  

[pH, lH] = findpeaks(ppg_Hand);  

where pF and pH have the points amplitudes and lF 

and lH have the peaks locations (time) 

b) For the database, timeDiff = 0.05 second (This 

value was determined based on the comparison of Δt 

and the reference PTT).           

3. Smart Peak Detection phase (Fig. 4 – Green rectangle) 

a) Detect difference between the number of critical 

points of ppg_Forehead and ppg_Hand: 

sizeDiff = absolute(size(lF) - size(lH)); 

b) Detect the PPG with more points: 

if size(lH) ≤ size(lF) 

then call function  

    pttVectors(lH,pH,lF,pF,sizeDiff,timeDiff);  

else 

then call function 

    pttVectors(lF,pF,lH,pH,sizeDiff,timeDiff);   

end 

The pttVectors function compares the point i of 

the smallest array within the point j of the biggest 

array, varying between j = i - sizeDiff to j = i + 

sizeDiff. When a point is found in the biggest 

array and its time difference to the i 

correspondent in the smallest array is smaller 

than timeDiff, the function assumes that they 

match, creating the time differences (T) array. 

4. Calculate Δt according to the Equation 2.  
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Figure 6. (a) Logitech, Inc. HD Pro Webcam C920 at 45 

cm from the volunteer. (b) Dyna-MAPA+ next to the 

volunteer wrapping the inflatable cuff. (c) Custom 

bracing to avoid the volunteer’s movement during the 

signal acquisition. 

III. MACHINE LEARNING ALGORITHMS TO 

ESTIMATE AORTIC PTT USING TIME 

DIFFERENCES 

This section presents machine learning algorithms' 

performance in estimating the Aortic PTT values given by 
the Dyna-MAPA+ (in the form of PTT = 1/PWV) [15]. First, 

the data set is described; then, the machine learning 

algorithms' results are presented and compared. The 

simulations have been performed on the MATLAB 

environment, running on a PC equipped with an Intel Core 

i7-4700MQ 2.4GHz-3.4GHz processor of 4 cores and 8GB 

of RAM. 

A. Data Set Description 

Once the process was done with all volunteers, the files 

containing the results, which were saved during the video 

recording, were compared to the reference sensor's PTT 

values. A preliminary data set for machine learning purposes 

was created. It has the 36 volunteers' data and consists of 

seven input variables and one output variable (Aortic PTT). 

The input variables are gender, height, age, weight, Body 

Mass Index, Body Surface Area, and meantime difference 

(Δt), as described in Table III. 

The Forward Sequential Feature Selection method (FSFS) 

method was applied to evaluate the input variables' relevance 

and eliminate redundant variables. It is a simple and fast (the 

time complexity is O(d2)) approach [22]; and selects the best 

subset of features (variables) by sequentially including 

features until there is no improvement in prediction, using a 

hill-climbing search strategy. 

The FSFS method was performed in 100 independent runs 

using 10-fold cross-validation, as illustrated in Fig. 7. The 

results show that features 1 (gender), 2 (height), and 7 (Δt) 

were selected in all the runs, revealing that these features are 

important in estimating the output variable. On the other 
hand, features 4 (weight) and 5 (BMI) were selected in 32 

and 25 runs, respectively; while, features 3 (age) and 6 

(BSA) were selected in few runs (0 and 2, respectively). 

Possibly, feature 3 (age) was not selected due to the small 

variation of the volunteers’ ages. 

According to results, features 1, 2, 4, and 7 were 

employed as input variables and Aortic PTT as an output 

variable for designing the learning models in this paper. 

After that, the data set was divided into three datasets: the 

training dataset (65%), the validation dataset (15%), and the 

testing dataset (20%). 

 
Figure 7. Feature selection using the FSFS method in 100 

independent runs. 
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TABLE I.  ΔT RESULTS FOR 17 MEN 

Volunteer 

ID 

Height 

(cm) 
Age 

Weight 

(kg) 

BMI 

(kg/m²) 

Time 

differences 

(Δt) in 

seconds 

1 174 26 64 21.0 0.0231 

2 182 24 64 19.4 0.0215 

3 172 21 76 25.7 0.0450 

4 172 22 78 26.3 0.0486 

5 181 23 71 21.6 0.0367 

6 173 22 72 24.0 0.0254 

7 171 21 70 23.9 0.0211 

8 189 23 68 19.1 0.0308 

9 173 23 62 20.7 0.0273 

10 167 20 70 25.0 0.0274 

11 187 25 77 22.1 0.0187 

12 173 26 76 25.6 0.0197 

13 174 22 84 27.7 0.0300 

14 169 22 52 18.3 0.0402 

15 168 23 89 31.5 0.0207 

16 184 23 99 29.2 0.0125 

17 171 29 63 21.6 0.0305 

 

 

TABLE II.  ΔT RESULTS FOR 19 WOMEN 

Volunteer 

ID 

Height 

(cm) 
Age 

Weight 

(kg) 

BMI 

(kg/m²) 

Time 

differences 

(Δt) in 

seconds 

1 176 25 70 22.4 0.0164 

2 156 23 55 22.5 0.0411 

3 159 19 50 19.9 0.0283 

4 156 20 49 20.2 0.036 

5 164 23 60 22.3 0.0402 

6 155 24 44 18.1 0.0251 

7 169 21 53 18.7 0.2840 

8 158 20 62 24.6 0.0247 

9 157 25 60 24.2 0.0395 

10 155 28 44 18.4 0.0275 

11 154 27 53 22.3 0.0219 

12 150 22 60 26.7 0.0324 

13 162 20 70 26.9 0.0143 

14 163 21 67 25.2 0.0294 

15 174 19 54 17.9 0.0133 

16 166 24 58 20.9 0.0205 

17 154 21 50 21.0 0.0291 

18 162 20 56 21.1 0.0310 

19 162 24 78 29.8 0.0218 

TABLE III.  INPUT VARIABLES DESCRIPTION 
Input 

variable 

number 

Input variable 

description 
Unit Min. value Max. value Mean value 

1 Gender - 0 1 0.527 

2 Height cm 150 189 167.555 

3 Age year 19 29 22.805 

4 Weight kg 44 99 64.666 

5 
Body Mass Index 

(BMI) 
kg/m2 17.900 31.500 22.938 

6 
Body Surface 
Area (BSA) 

m2 1.400 2.200 1.727 

7 Δt second 0.012 0.048 0.027 

 

B. Learning Models Description and Setup 

In this work, tests are performed by comparing the 

following learning models: Levenberg-Marquardt 

Backpropagation (LMB), Extreme Learning Machine 

(ELM), Ensemble of Levenberg-Marquardt Backpropagation 

(ELMB), and Ensemble of Extreme Learning Machine 

(EELM). The single learning model, i.e., LMB and ELM, are 

implemented as follows: 

 LMB: using trainlm network training function of the 

Neural Network Toolbox in MATLAB, where the 

parameters are set to the default values; and  

 ELM: standard ELM, implemented as the paper 

[23], with sigmoid as the activation function. 

For each learning model and each component-model of an 

ensemble system, the number of neurons in the hidden layer 

L is selected by varying it in the interval [1, 20]. And for 

each model, L's value is chosen based on the lowest mean 

squared error on 10-fold cross-validation using the training 

data set, where the best value of L is selected as the one that 

minimizes the mean testing error on the 10-folds [23]. It 
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should be pointed out that each model is designed using the 

training dataset. Experiments are also performed by 

comparing the effectiveness of ELMB and EELM, which are 

implemented as follows: 

 ELMB: 20 NN models trained with the LMB 

algorithm, where the models’ outputs are combined 

by average; and 

 EELM: 20 NN models trained with the standard 

ELM algorithm, where the models’ outputs are 

combined by average. 

The learning models are evaluated using the mean and 

standard deviation of the Mean Squared Error (MSE), the 

Root Mean Squared Error (RMSE), the Mean Absolute Error 

(MAE), and the Pearson Correlation Coefficient (PCC) 

between the predicted outputs and the real outputs on the 
data sets. In the experiments, only the error on the testing 

data set is reported. 

C. Comparison of Learning Models  

In this section, LMB, ELM, ELMB, and EELM are 

compared. The aim is to evaluate their performances in 

estimating the Aortic PTT. For this purpose, for each model, 

the results are averaged over 20 runs. The errors on the 

testing dataset and the processing time (in seconds) of each 

learning model are presented in Table IV.  

For the single learning models (LMB and ELM), it has 

been observed that ELM outperforms LMB in terms of errors 

(e.g., the average MSE for the LMB model is 0.241×10-3; 

while for the ELM model is 0.167×10-3) and processing time 

(i.e., the average processing time for the LMB model is 
20.953 seconds; while for the ELM model is 2.542 seconds).  

Moreover, it has been observed that the use of multiple 

models (ensemble models) reduces the prediction error 

significantly. For example, for the ensemble of LMB models 

(i.e., ELMB), the average MSE is 0.124×10-3; and, for the 

single LMB model, the average MSE is 0.241×10-3. 

Additionally, for the ELM models' ensemble (i.e., EELM), 

the average MSE is 0.123×10-3; and, for the single ELM 

model, the average MSE is 0.167×10-3. It can be observed 

that EELM and ELMB have similar error values; however, 

EELM has a lower processing time when compared to 

ELMB.  

In the ELMB model experiments, the lowest MSE error in 

a run was 0.107×10-3; while for the EELM model, this value 

was 0.104×10-3. The estimated outputs of the ELMB and the 

EELM models in the testing dataset are reported in Table V. 

It can be observed that the estimated outputs are similar to 

the Aortic PTT's real output values. Table VI shows the 

values of PWV obtained by the function PWV = 1/PTT. 

 

TABLE IV.  AVERAGE AND STANDARD DEVIATION OF THE PREDICTION ERRORS AND PROCESSING 

TIME OF THE LEARNING MODELS1. 

Learning 

Model 
MSE RMSE MAE PCC 

Processing 

Time (s) 

LMB 
0.241  

(0.170) 

0.120 

(0.085) 

12.770  

(4.365) 

0.626  

(0.255) 

20.953  

(0.699) 

ELM 
0.167 

 (0.065) 

0.084  

(0.033) 

10.823 

 (2.322) 

0.721  

(0.107) 
2.5420  

(0.050) 

ELMB 
0.124  

(0.007) 

0.062  

(0.004) 

9.832  

(0.339) 
0.769  

(0.019) 

411.541  

(14.217) 

EELM 
0.123  

(0.015) 

0.061  

(0.008) 

9.331  

(0.748) 
0.769  

(0.026) 

50.707  

(0.682) 
1The MSE, RMSE, and MAE values have been multiplied by 103; Values in parentheses are the standard 

deviation value in 20 runs, and values outside parentheses are the average value  in 20 runs. 

TABLE V.  PTT REAL OUTPUT AND PREDICTED OUTPUT VALUES OF ELMB AND EELM IN THE 

TESTING DATA SET. 

Output/ 

Volunteer 

Testing 

sample 1 

Testing 

sample 2 

Testing 

sample 3 

Testing 

sample 4 

Testing 

sample 5 

Testing 

sample 6 

Testing 

sample 7 

Real output values 

(Aortic PTT) 
0.1754 0.2326 0.2128 0.2128 0.2128 0.2041 0.2041 

Predicted value of 

ELMB 
0.1826 0.2198 0.2162 0.2170 0.2065 0.2191 0.2196 

Predicted value of 

EELM 
0.1838 0.2189 0.2100 0.2098 0.2076 0.2174 0.2174 
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TABLE VI.  PWV REAL OUTPUT AND PREDICTED OUTPUT VALUES OF ELMB AND EELM IN THE 

TESTING DATA SET 

Output/ 

Volunteer 

Testing 

sample 1 

Testing 

sample 2 

Testing 

sample 3 

Testing 

sample 4 

Testing 

sample 5 

Testing 

sample 6 

Testing 

sample 7 

Real output 

values (PWV) 
5.7 4.3 4.7 4.7 4.7 4.9 4.9 

Predicted value 

of ELMB 
5.4764 4.5496 4.6253 4.6083 4.8426 4.5641 4.5537 

Predicted value 

of EELM 
5.4407 4.5683 4.7619 4.7664 4.817 4.5998 4.5998 

 

IV. CONCLUSION AND FUTURE WORK 

This paper presented the software to measure the PTT and 

PWV by analyzing PPG signal waves acquired using a 

digital camera recording two regions of interest 

simultaneously. The experiments described in the previous 

sections showed high agreement between the video-based 

and the reference acquisition methods, proving that it is 

possible to accurately measure PPT and PWV using a 

contactless method with machine learning techniques. The 

machine learning methods could reduce the error by 
introducing more physiological variables, such as gender, 

height, and meantime difference (Δt), in predicting the Aortic 

PTT. The video-based technique does not require sensors 

attached to the volunteer’s skin, making monitoring the 

physiological data easier for the user in daily life.  

However, some limitations must be addressed in future 

implementations. The experiments described in this paper 

were done by asking the volunteers to keep still while 

recording the video to avoid motion-induced distortions in 

the signals. Future work will be focused on creating 
heuristics to handle the noise caused by the volunteer’s 

movements while using the software. The next tasks will also 

focus on Ubiquitous PWV Monitoring, allowing people to 

measure their PWV anytime along the day without 

uncomfortable sensors attached to the body. Considering that 

the software only needs small segments of video to obtain 

the mean time difference (Δt) based on the critical points 

present in the PPG signal, the proposed software will also be 

able to obtain the PWV through the same segments of video, 

allowing the detection of abrupt variations and performing 

more measurements than a standard method, which require 

contact to the skin. 
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