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Abstract: Cardiovascular diseases lead the world ranking 

of causes of death. The ubiquitous health monitoring is 

essential because it allows for an early diagnosis and 

prevents fatalities. Physiological variables that provide 

information about the cardiovascular system can be 

estimated by the photoplethysmographic signal (PPG), 

which can be recovered without contact with the camera. 

This work presents software capable of estimating 

physiological variables from the PPG signal obtained by a 

camera. They are also features implemented to improve 

the usability of the software. 
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I. INTRODUCTION 

Cardiovascular diseases between 1990 and 2017 led the 

world ranking of causes of death [1]. Early diagnosis 

allows risk prediction and can prevent fatalities. To 

achieve this goal, daily monitoring of cardiovascular 

health is necessary. Information on Pulse Transit Time 

(PTT), Pulse Wave Speed (PWV), Blood Pressure (BP), 

and Oxygen Saturation (SpO2) are essential for monitoring 

cardiovascular health. BP and SpO2 are two of the five 

vital signs considered vital for monitoring hospitalized 

patients [2], while PWV, estimated from PTT, is one of the 

markers of arterial stiffness. Arterial stiffness can cause 

cardiovascular diseases, such as hypertension and vascular 

embolism [3]. Monitoring these variables allows assessing 

cardiovascular health and providing a prognosis for the 

user. 

PTT is defined as the time required for a pressure wave 

to propagate between two arterial sites [4]. It can be used 

to monitor PWV, as both have an inversely proportional 

relationship. PWV is the speed that the pressure wave 

propagates along the arterial branch, being considered the 

gold standard for measuring arterial stiffness [5]. 

According to the arterial branch, where the pressure wave 

was measured, the estimation of PWV can be performed in 

two different ways. 

PWV measured in two different arteries, as in the 

carotid and femoral arteries, are called regional PWV. It 

provides the mean PWV, obtained in different arteries with 

other mechanical characteristics [5]. The regional PWV 

and PTT have some limitations, as their measurements 

vary due to the pre-ejection period. In this case, the 

measurement of these variables disregards the effects 

caused by the reflection of the wave in the arteries, and 

their estimates are subject to errors in the calculation of the 

distance between the measurement sites [6]. These 

problems generate constant calibration in the devices used 

for measurement, limiting their use [7]. 

When the measurement is performed on a small arterial 

segment, the PWV is called Local PWV (LPWV) [8]. 

Some studies have reported that LPWV presents the actual 

speed of propagating the pulse wave in the arteries. 

Therefore, a more reliable estimate of the pulse wave rate 

[6] [5]. Besides, local measurement avoids calculation 

errors in the distance between the two measurement sites 

and allows a regional analysis of arterial stiffness. 

BP is the pressure generated by the blood flow in the 

arterial walls. It is measured through systolic blood 

pressure (SBP) and diastolic blood pressure (DBP), that is, 

by the ratio of SBP/DBP [9]. A process commonly 

performed in offices is the screening for hypertension, 

which consists of performing at least two BP 

measurements and calculating the mean BP [10]. If the 

mean SBP exceeds 140 mmHg and/or the mean DBP 

exceeds 90 mmHg, the patient can be considered 

hypertensive [4]. It is reported in several studies that BP is 

directly related to PWV [5] [8] and PTT [4] [11] and can 

be measured using these variables, thus allowing 

ubiquitous BP monitoring. 

SpO2 measures the relative concentration of oxygenated 

hemoglobin in the blood concerning the total hemoglobin 

amount [12]. It is commonly used to monitor a patient's 

health because it provides continuous oxygen 

concentration measurements in the blood. Usually, a 

healthy person has a saturation in the range of 95% to 

100%. SpO2 levels continuously below 90% may indicate 

problems with oxygen distribution [13]. 

The physiological variables LPWV and SpO2 can be 

estimated using photoplethysmographic signals (PPG) [6] 

[12] [13] [14]. LPWV is evaluated using two separate PPG 

sensors at a known distance [14]. LPWV is calculated 

using the ratio between the length and the PTT of the 

pressure wave between the PPG sensors [6] [14]. SpO2 is 

computed using the pulse oximetry technique, which 

considers the difference in light absorption by oxygenated 

hemoglobin in the wavelengths of red and infrared light 

[13]. 

However, the devices commonly used to monitor these 

variables are only available in hospital settings. Besides, 

this equipment's operation requires sensors in contact with 

the skin, which can cause discomfort and limit the patient's 

movement. However, it is possible to replace PPG sensors 

with contact with a video camera and ambient light and 

recover the PPG signal using a non-contact technique [15]. 

http://ijbttjournal.org/archives/ijbtt-v10i4p604
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In the literature, some studies acquire the SpO2 and 

PWV/PTT variables from the PPG signal. Some of them 

are discussed in the following paragraphs. 

Sugita et al. [11] obtained PTT from video images and 

then correlated it with BP. In this work, the researchers 

found a positive correlation rate of approximately 0.6 

between the time difference measured on the face and 

palm with the BP obtained by a pressure sensor placed on 

the individual's left middle finger. Similarly, Khong, Rao, 

and Mariappan [10] used the estimated PWV through chest 

and forehead video to measure BP. They obtained an 

absolute mean error between the method evaluated at work 

and the oscillometric device used to compare 4.22 ± 3.15 

mmHg for SBP and 3.24 ± 2.21 mmHg for DBP. Both 

studies obtained the PPG signal in a non-contact 

environment using a camera, but neither performed the 

LPWV evaluation. 

However, Nabeel et al. [8] and P. et al. [14] performed 

the LPWV assessment in a small arterial segment. P. et al. 

[14] obtained the LPWV in the range of 2.13 to 3.23 m/s 

for participants aged 22 to 26 years, while Nabeel et al. [8] 

received the LPWV of 2.63 ± 0.42 m/s in a population 

aged 24.5 ± 4 years. Both were able to acquire PPG signals 

in the same arterial segment, calculate the pulse wave 

transit time, and finally estimate the LPWV. However, in 

both studies, PPG sensors with contact were used. 

Kong et al. [16] and Shao et al. [13] measured oxygen 

saturation without contact from a camera. Kong et al. [16] 

found an error between the evaluated method and the 

comparison device in just three heartbeats. Shao et al. [13] 

found a correlation coefficient of 0.936 between the 

evaluated and the comparison instruments. However, in 

both studies, the camera was synchronized with an array of 

LEDs with two different wavelengths. The use of 

dedicated lighting made the system dependent on external 

hardware. In a study using only one camera, Guazzi et al. 

[12] found a correlation coefficient of 0.85 between the 

proposed method and the comparison instrument. However, 

the technique was limited to detecting changes in oxygen 

saturation and did not measure oxygen saturation. 

Therefore, the present work aims to explore the 

estimation of the physiological variables PWV, PTT, SpO2, 

and BP through a camera. Besides, it improves and adds 

new features to the HRVCam (Heart Rate Variability by 

Camera) software, now called CCM (Contactless Cardio 

Monitor). HRVCam was initially developed by Souza [17] 

and validated by Martins [18]. In the beginning, HRVCam 

estimated and presented heart rate (HR) and heart rate 

variability (HRV). Currently, CCM is also able to assess 

LPWV, SpO2, and BP. In addition to evaluating the 

acquired signal and generating reports on the physiological 

variable and the BP calibration process. It also allows the 

measurement of the distance between regions of interest, 

ROIs, without contact, and enables them to carry out the 

LPWV/PTT calibration process for BP. 

 

 

 

 

II. MATERIALS AND METHODS 

A. Software Description and Signal Acquisition 

The software functionalities and the acquisition of new 

variables were raised and evaluated in meetings held by 

the research group BESt (Biomedical Engineering and 

Embedded Systems) Group, from Pontifical Catholic 

University of Goias (PUC Goiás), and with future users. 

The software was developed in MATLAB (The 

Mathworks, Inc.) for being an easy-to-use programming 

language, in addition to having many toolboxes and 

packages that facilitate data acquisition and analysis. 

In the tests carried out to verify the functionalities 

developed, a Camera (HD Pro C9200 Logitech Inc.) was 

used with a sampling frequency of 30 Hz (30 frames per 

second, fps). In all tests, the videos were recorded with a 

duration of 1 minute, with 800x448 pixels of resolution. 

The software was run on a Lenovo IdeaPad 330-15IKB 

laptop, equipped with Intel® CoreTM i5-8250U 1.60 GHz, 8 

GB of RAM, and NVIDIA GeForce® MX150 2 GB video 

card, with Windows 10 operating system version 20H2. 

Before starting to acquire data from the user, the 

software's initial screen is presented to the user, as shown 

in Figure 1. The software works online, receiving and 

processing the video simultaneously, or offline, allowing 

the user to enter a saved video on your computer's hard 

disk drive. Initially, the physiological variable presented is 

LPWV, but the user can configure the software to show the 

other variables Heart Rate and its variability, BP, and SpO2. 

Besides, the user can enter his anthropometric data (Figure 

2) or configure the system (camera, video, and signal 

processing parameters) and select the variable to be 

estimated (Figure 3). After configuring the software, the 

user chooses the ROI(s) and starts acquiring the video to 

assess the previously selected variable. Figure 1 shows the 

configured software and ROIs for LPWV estimation. The 

following sections show the acquisition of the variables 

and the other functionalities of the software. 

 

Fig 1: Initial software interface and example of ROIs 

for LPWV estimation 
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                    Fig 2: User data input interface 

 

Fig 3: Camera, video, and physiological variable 

configuration interface 

B. Local Pulse Wave Velocity 

For LPWV estimation, only the frames referring to the 

green color channel of the video were used. Figure 4 

illustrates the video processing for LPWV acquisition. In 

each frame, the average of the pixels in the ROI is used to 

compose the raw signal x [n] (Figure 4b). A high-pass 

filter with a cut-off frequency of 0.3 Hz is then applied at x 

[n] based on the previous smoothness approach [19] to 

remove noise caused by the user's movement. The signal is 

then normalized, subtracting its mean (xm) and dividing by 

its standard deviation (∂), as shown in equation 1, 

generating the signal z [n]. 

z[n] = (x[n] - xm) /∂  (1) 

A Chebyshev type II low-pass filter with a cut-off 

frequency of 5 Hz was applied to the z [n] signal. Finally, 

the signal sampled at 30 Hz is interpolated to 500 Hz to 

simulate a high sampling rate. The resulting signal, y [n], 

is like the signal obtained from sensors with contact, as 

shown in the work of [14]. 

In this way, the pre-processing output, y [n], contains 

the two PPG signals used to calculate the LPWV. The 

calculation is performed by calculating the distance 

between the two ROIs (∆d) and the average time 

difference between two peaks of the PPG signal obtained 

in the two ROIs (∆t). Equation 2 shows the LPWV 

calculation, 

LPWV = ∆d/∆t (2) 

the value of ∆t is calculated as described by equation 3, 

where Ti indicates the time difference between the peaks 

of the two signals obtained in the two ROIs and n is the 

number of peaks found. The value obtained is used as an 

index equivalent to the PTT. 

∆t = (|T1| + |T2| + ...+ |Tn |)/n (3) 

An intelligent peak combination algorithm is applied to 

avoid a peak from occurring in just one of the signals or 

the occurrence of two peaks with a large difference in time 

(as highlighted in Figure 4c). The algorithm combines the 

peaks of two signals with a time difference less than or 

equal to 0.1 second [20]. Figure 4d shows an example of 

disregarded peaks, as the time difference between them 

was large, which would be impossible to occur at a 

distance ∆d. 

 

Fig 4: (a) Acquisition of the online signal. (b) The raw 

signal was obtained in the two regions of interest 

(proximal in blue and distal in yellow). (c) Signal 

received after processing. (d) Peaks after going through 

the peak combination algorithm 

C. Calculation of the Distance Between the Regions of 

Interest 

The software has a feature that calibrates the distance 

(in pixels) between the two ROIs for the length (cm) 

between them. Figure 5 shows the algorithm for the 

calibration. The user informs the physical distance 

between the two ROIs (physDist) at the measurement site. 

The software then calculates the distance in pixels between 

the ROIs (pixelDist) and a calibration factor that relates the 

two lengths (calibration factor). The factor is the ratio of 

the reported distance to the calculated distance. This factor 

is saved in case the user moves one of the ROIs, updating 

the distance value. 

physDist ← distance entered by the user (in cm) 

pixelDist ← distance between the center of the two 

ROIs (in pixels) 

calibration factor ← pixelDist / physDist 

Save calibration factor 

Fig 5: Algorithm for distance calibration 

Whenever the user moves one of the two ROIs, the 

stored factor variable is recovered. The relationship 

between the distance from the center of the two ROIs 

(roisDist) and the factor variable is the physical distance 

between them in centimeters. Figure 6 shows the algorithm 

to perform this process. The resulting value is multiplied 

by 0.01 to convert from centimeter to meter. 
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factor ← load calibration factor 

roisDist ← distance between the center of the two 

ROIs (in pixels) 

distance ← (pixelDist / factor) * 0.01 

  Fig 6: Algorithm for calculating the new distance 

D. Oxygen Saturation 

Oxygen saturation is estimated by the PPG signal 

obtained in the palm. In each frame of the video, the 

average ROI pixels make up the signal, like the x [n] 

signal shown in section 2.2. The red and green color 

channels are used as the red and infrared wavelengths, 

respectively. 

The recovered PPG signal consists of two components. 

A pulsatile component, AC (Alternating Current), which is 

attributed to synchronous blood variation, and a DC 

(Direct Current) feature, which is related to low-frequency 

components in blood flow [21]. The ratio between the AC 

and DC components of the two wavelengths is defined as 

the ratio of the ratios (RR) (equation 4). The RR value is 

proportional to the oxygen saturation (SpO2) value 

(equation 5) [13], 

RR = (ACred / DCred) / (ACgreen / DCgreen) (4) 

SpO2 = A * RR + B (5) 

where A and B are constants calibrated with a 

comparison instrument. In the present work, the Mediclini 

AS-302-L pulse oximeter was used for the calibration 

process described in section 3.2. 

The DC component is recovered by a Butterworth low-

pass filter of order two and a cut-off frequency of 0.7 Hz. 

The AC component is retrieved by a Butterworth band-

pass filter of order one and cut-off frequency from 0.7 to 3 

Hz. Right after separation of the elements, in time 

windows of 4 seconds and without overlap, the peak-to-

peak value is calculated in the AC component. The 

average of the signal is calculated in the DC component. 

Then the RR value is calculated, according to equation 4. 

Finally, a moving average of 10 seconds is applied to the 

RR value, thus obtaining the RR value estimated by the 

software in time windows of 4 seconds each. 

E. Blood Pressure 

The software has a feature to facilitate the calibration of 

LPWV or PTT for BP estimation. The interface that 

implements the functionality was developed with the 

MATLAB interface design toolbox. It features buttons, 

lists, and graphs that allow interaction with the user. Figure 

7 presents the graphical interface with blood pressure data 

loaded by the user. Besides, at the end of the calibration 

process, a report is generated containing all the data and 

parameters used. 

For the calibration process, there are two modes of 

operation. In manual mode, the user selects the curve and 

its degree and then generates the calibration curve. The 

available curves are polynomials, a/x + b type curves, 

logarithmic curve, and exponential curve. All coefficients 

of the curve are found with the MATLAB adjustment 

function. The second mode of operation is the automatic 

mode, in which the user informs the type of error between 

the measured and estimated values to select the best curve. 

The types of error can be the mean square error (MSE), the 

square root of the mean square error (RMSE), or the mean 

absolute error (MAE). 

In automatic mode and possession of the input data, the 

software generates several curves, calculates the chosen 

error value, and selects the curve with the smallest error. 

Regardless of the mode of operation, the software enables 

the dispersion graphs editions after plotting the curves, 

which can be the graph of the curve and correlation 

coefficients (Figure 13a), the absolute error graph (Figure 

13b), or the Bland Altman graph [22]. 

 

      Fig. 7: Initial interface for BP calibration 

F. Signal Evaluation and Report Generation 

During data acquisition, the quality of the PPG signal is 

displayed. The raw signal is evaluated using the signal-to-

noise ratio (SNR) every 10 seconds of acquisition. Quality 

is defined as Bad if the SNR is less than -2 dB; Good if the 

SNR is more significant than -2 dB; and less than 0 dB or 

Excellent, otherwise. 

 

Fig. 8: (a) Example of Bad quality signal. (b) Example 

of Good quality signal. (c) example of Excellent quality 

signal 

If the signal is rated as Bad, it indicates that it has a lot 

of noise. This fact is related to the user's movements. Thus, 

the use of this sign to estimate variables is not 

recommended for estimating variables. When evaluated as 

Good, the noise signal has, but can still be used to estimate 

the variables. In this case, the noise influences only a part 

of the signal. Finally, if the signal is rated as Excellent, it 

has sufficient quality to calculate variables and has little 

effect by the noise. This functionality allows the user to 

have feedback on the acquired signal's quality, allowing 

him to start the acquisition if he wants to obtain the signals 

with more quality. Figure 8 shows sections of the signal 

classified as Bad (Figure 8a), Good (Figure 8b), and 

Excellent (Figure 8c). 

The software also generates reports containing 

information on the estimation of variables and the BP 

calibration process. The data used for the reports are those 
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informed in the user configuration (Figure 2) and 

camera/video configuration (Figure 3) interfaces or the 

data related to the calibration process. The report is 

generated from the MATLAB mlreportgen package. The 

base document for the report was created with Microsoft 

Word. The software fills the document fields with the 

input data and the input variable, generates the information 

in PDF format, and makes it available to the user. Figure 9 

shows an example of the LPWV estimate report generated 

by the software. 

 

Fig. 9: Example of a report generated by the software 

III. RESULTS AND DISCUSSIONS 

A. Estimated Local PWV 

A test was carried out with three participants with 

different skin color levels on the Fitzpatrick scale to verify 

PPGs signals' acquisition to calculate LPWV, [23]. The 

objective was to confirm that the recovered signals had all 

the characteristic points of a PPG signal and that the signal 

peaks were visible. 

The characteristic points considered are the 

beginning/end of the pulse wave, the systolic peak, and the 

diastolic peak. Thus, the beginning/end of the pulse wave 

represents the moment when the pressure wave begins or 

ends, the systolic peak marks the moment when blood is 

ejected into the arteries. The diastolic peak marks the 

instant when the heart fills up with blood from the veins 

[15]. These points show events in the cardiac cycle and are 

an essential part of the PPG signal waveform. They were 

used to check if the recovered signal had a waveform like 

the PPG signal obtained by sensors with contact. 

The individuals were separated into two groups, 

according to age. Group 1 consisted of individual 1 at 22 

years of age, while group 2 consisted of individuals 2 and 

3 at 55 years. The distance between the center of the two 

ROIs was calculated using the non-contact method 

presented in Section 2 to estimate the LPWV. The values 

were validated with a tape measure, and the absolute error 

between the two instruments was only in the 4th decimal 

place. The distance used was 0.06 m for individuals 1 and 

3 and 0.07 m for individual 2. 

a) Group 1 - Individual 1: Individual 1 was 22 years old, 

male, had no history of cardiovascular disease, and had 

level III on the Fitzpatrick scale. Figure 10 shows a section 

of the acquired signal. As highlighted, the signal reflected 

all the PPG signal's characteristic points, and the peaks 

(red circles) are easily identifiable. For this individual, the 

∆t value was 0.0268 s, and the LPWV was 2.23 m/s. The 

result is in line with those obtained by Nabeel et al. [8] and 

P. et al. [14] for a population aged 21 to 28, which 

corresponds to the individual's age group (22 years). 

 

Fig. 10: PPG signal acquired in the individual 1 

b) Group 2 - Individuals 2 and 3: Individuals 2 and 3 

were 55 years old, a man and a woman, with no history of 

cardiovascular disease, level V (male) and level II (female) 

on the Fitzpatrick scale. Figure 11 shows a section of the 

two individuals' signals, with the man in Figure 11a and 

the woman in Figure 11b. In this group, the peaks were 

also visible, as well as the other characteristic points. 

Besides, the dicrotic notch (slight depression between the 

systolic and diastolic peaks) became smaller. This 

characteristic was expected, as increasing age causes the 

distance between the peaks to decrease, and the dicrotic 

notch becomes less visible [15]. 

For women, the ∆t value was 0.0281 s, and the LPWV 

was 2.13 m/s, while for men, the ∆t value was 0.0260 s 

and the LPWV was 2.69 m/s. 

 

 

Fig. 11: (a) PPG signal acquired for individual 2. (b) 

PPG signal acquired for individual 3 
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c) Comparison of Group 1 and Group 2: For the three 

individuals, the recovered signals had the PPG signal 

waveform characteristics and, the peaks (red circles) were 

easily identifiable. Besides, the signal recovered in an 

individual with scale V presented a waveform similar to an 

individual with scale II and III. This fact corroborates the 

palm as ROI, as it allows the acquisition of signals in 

people with a higher melanin concentration. Therefore, the 

distal region is just below the little finger, and the proximal 

region is located above the wrist 6 ~ 7 cm away from the 

distal region. 

The main limitation of this test was a small population, 

n = 3. The population has different characteristics, which 

allows an evaluation of the software in different scenarios. 

In the future, it is expected to conduct tests on a more 

extensive and more diverse population to validate the 

acquisition of LPWV without contact. 

B. SpO2 Calibration 

For the calibration process of RR values with SpO2 

values, videos of a single 22-year-old individual with no 

history of cardiovascular diseases were captured. During 

acquisition, SpO2 values were obtained by the Mediclini 

AS-302-L pulse oximeter. The values obtained by the 

software and by the oximeter were noted, and Pearson's 

correlation coefficient was calculated between them. The 

coefficient found was r = -0.75. The values of constants A 

and B in Equation 5 were calculated using the Matlab 

polyfit function. Equation 6 shows the regression obtained. 

SpO2 = -22.93*RR + 106.611 (6) 

After calibration, a test was performed with the 

software. Figure 12 shows the SpO2 graph obtained with 

the two instruments. The values of the comparison 

instrument, in blue, and the SpO2 value calculated by the 

software, in red. As can be seen, the values were very 

close. The average absolute error was 0.21667%. The 

software took longer than the reference oximeter to capture 

the change in saturation. This may be related to the 

position of the hand. As it was lifted, the pressure wave 

took longer to reach the region of interest. Besides, the 

values estimated by the software have been rounded, as the 

reference oximeter does not have decimal values. 

 

Fig. 12: Estimation of SpO2 with both instruments, in 

red the value estimated by the software and in blue by 

the oximeter 

However, the absolute error between the two 

instruments' samples did not exceed 1%, which is within 

the limits of clinically acceptable precision, i. e., accuracy 

less than 4% in the measurement range of 70 -100% SpO2 

[24]. 

The major limitation of the SpO2 estimate in the present 

study was the acquisition of data for system calibration. 

Therefore, in the future, it is intended to improve accuracy 

by acquiring more data to calibrate the software, in 

addition to developing an interface for the calibration of 

RR and SpO2 values, similar to the BP calibration interface. 

Another limitation, which also extends to LPWV 

estimation, was using a 30 Hz (30 fps) sampling camera 

for signal acquisition. The acquisition rate can influence 

the detection of changes in the signal on the skin. Thus, in 

future research, it is intended to employ a camera with a 

higher sampling frequency. 

C. Interface Test for BP Calibration 

For testing the functioning of the BP calibration 

interface, 15 videos were collected from a single 22-year-

old individual with no history of cardiovascular disease. 

The PWV and PTT values were estimated by the software 

and saved automatically in a table. The SBP and DBP 

values were calculated by the Omron HEM-7122 BP 

Monitor and recorded manually in a second table. Both 

instruments were started at the same time. 

After acquiring the data, they were loaded into the 

calibration interface (Figure 7a). After this step, it was 

verified that all components of the code were operating as 

expected. Also, it was demonstrated that the report with 

the input data was generated and that the software was 

calibrated correctly. Figure 13 shows the interface after the 

data has been loaded, and the calibration curve has been 

developed in automatic mode. Figure 13a shows the 

calibration curve, the Pearson (r) and Spearman (p) 

coefficients. Figure 13b shows the absolute error graph 

between the instrument and the software. 

 

 

Fig. 13: (a) Graphical interface with the generated 

curve. (b) Graphical interface with the absolute error 

graph 
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The interface development's main objective was to 

simplify the software calibration process, bringing the 

parameters from the interface elements closer to the user. 

It makes it possible to improve the measurement accuracy 

and allows the user to add new data whenever necessary. 

Besides, the interface presents useful information that can 

be used in future validation studies of this software. 

In the test performed with the automatic operation mode, 

a polynomial of the first degree was found to calibrate the 

PTT for BP. Calculation using polynomials costs less 

computationally compared to other curves. For the data set, 

the mean absolute error between the instrument and the 

software for SBP was 2 mmHg, while for DBP it was 2.7 

mmHg. The mean absolute error was relatively low, which 

corroborates the use of calibration that allows estimating 

BP from PTT/LPWV. 

It is intended to acquire more data in a larger population 

and with different characteristics and use the interface to 

calibrate the curve in future work. Besides, validation 

studies and analysis of the relationship between 

LPWV/PTT and BP. 

IV. CONCLUSION 

The present work presented the development of 

software for estimating and calibrating non-contact 

physiological variables. The resources developed will 

allow the user to interact with the software and obtain 

more information about their cardiovascular health and 

improve BP estimation accuracy with new data. The 

possibility of calibrating the distance allows the distance 

between the ROIs without contact with the user's skin. The 

software could acquire two PPG signals without contact in 

a small arterial segment and then estimate the LPWV. It 

was also calibrated to estimate SpO2, with a correlation 

coefficient of r = 0.75. In all cases, the palm region was 

used to acquire the signals. The palm allows the 

acquisition of the PPG signal in people with a higher 

melanin concentration. Future work will focus on: i) 

testing a larger population with normotensive and 

hypertensive individuals with comparison instruments; ii) 

improve the calculation of the contactless distance to 

eliminate the need for the calibration step; iii) in the 

acquisition of new BP and SpO2 data to improve the 

software's accuracy in estimating these variables. 
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