Genetic Diversity of Rhizobial isolates revealed by PCR-RAPD fingerprinting and the data were analyzed using POPGEN.

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2019 by IJBTT Journal
Volume - 9 Issue - 4                          
Year of Publication : 2019
Authors : Rajasekaran. R, Chandrasekaran. R, Muthuselvam. M, Arunkumar. S, Senthil kumar. S
DOI :  10.14445/22490183/IJBTT-V9I4P605

Citation

MLA Style:Rajasekaran. R, Chandrasekaran. R, Muthuselvam. M, Arunkumar. S, Senthil kumar. S  "Genetic Diversity of Rhizobial isolates revealed by PCR-RAPD fingerprinting and the data were analyzed using POPGEN." International Journal of Biotech Trends and Technology 9.4 (2019): 18-41.

APA Style:Rajasekaran. R, Chandrasekaran. R, Muthuselvam. M, Arunkumar. S, Senthil kumar. S (2019). Genetic Diversity of Rhizobial isolates revealed by PCR-RAPD fingerprinting and the data were analyzed using POPGEN. International Journal of Biotech Trends and Technology, 9(4),18-41.

Abstract

Rhizobia are soil bacteria which specifically nodulate legume roots thus forming a nitrogen fixing root nodule symbiosis, which has a great importance to agriculture in nitrogen deficient environments. The study aimed at investigating the genetic diversity of fourteen different rhizobial isolates using PCR-RAPD fingerprinting and the data were analyzed using POPGEN. Total genomic DNAs from different field isolates were amplified using five different arbitrary primers (OPA02, OPA03, OPM17, OPP07 and OPP08), the amplified DNA solution was subjected to agarose gel electrophoresis. Around 600 different bands (558 polymorphic) were produced from 14 isolates showing 93% of overall polymorphism. All the five primers produced polymorphic bands with OPA03 and OPP08 registering one hundred per cent polymorphic bands. Among these two, only OPP08 produced unique bands (2.30%). The percentage of monomorphic bands produced by OPA02, OPM17 and OPP07 were 9.65, 16.66 and 17.07 respectively. Similarly the percentages of unique bands for the above primers were 2.06, 1.19 and 2.43. Resolving power (Rp) of the primers ranged from 1.84 (OPM17) through 1.86 (OPA03, OPP07, OPP08) to 1.90 (OPA02). Summary of genetic variation statistics for all loci produced by five random primers using POPGEN version 1.31software reveal that primer OPA03 is more effective in highlighting the variation between the isolates. Nei’s unbiased measures of genetic identity and genetic distance were used to construct a similarity matrix and a rectangular cladogram was constructed based on UPGMA analysis. Ewans-Watterson test for neutrality confirms the existence of genetic diversity in all the polymorphic loci indicating their neutral nature with regard to evolution of the isolates.

References

[1] Amarger, N., Bours, M., Revoy, F., Allard, M.R., Laguerre, G., 1994. Rhizobium tropici nodulates field - grown Phaseolis vulgaris in France. Plant Soil. 161,147-156.
[2] Caetano-Anolles, G., Bassam, B.J., Gresshoff, P.M., 1992. Primer-template interactions during DNA amplification finger printing with single arbitrary oligonucleotides. Mol. Gene. Genet. 235, 157-165.
[3] Chen, L.S., Figueredo, A., Pedrosa, F.O., Hungria, M., 2000. Genetic characterization of soybean Rhizobia in Paraguay. Appl. Environ. Microbiol. 66, 5099-103.
[4] Chiarini, L., Bevivino, N., Tabachioni, S., 1994. Factors affecting the competitive ability in rhizosphere colonization by plant growth promoting strains of Burkholderia cepacia. In proceeding of the Third International Workshop on Plant Growth-Promoting Rhizobacteria, CSIRO Australia, Adeleide, Australia, pp. 204-206.
[5] Dassanayake, S.R., Samaranayake, P.L., 2003. Randomly Amplified Polymorphic DNA Fingerprinting The Basics. In Methods in Molecular Biology, vol.226, PCR Protocols [Bartlett, J.M.S. and Stirling, D. (eds.)]. Totowa, New Jersey: Humana Press Inc.
[6] Dooley, J.J., Harrison, S.P., Mytton, L.R., Dye, M.A., Creswell, A., Skot, C., Beeching, J.R., 1993. Phylogenetic grouping and identification of Rhizobium isolates on the basis of random amplified polymorphic DNA profiles. Canadian J. Microbiol. 39, 665-673.
[7] El-Fiki, A.A., 2006. Genetic Diversity in Rhizobia Determined by Random Amplified Polymorphic DNA analysis. J. Agricl. Soc. Sci. 2(1), 1-4.
[8] Fernandez, M., Figueiras, A., Bonito, C., 2002. The use of iSSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104, 845-851.
[9] Fremont, M., Prin, Y., Chauviere, M., Diem, H.G., Pwee, K.H., Tan, T.K., 1999. A comparison of Bradyrhizobium strains using molecular, cultural and field studies. Plant Sci. 141, 81-91.
[10] Ganeshkumar, G., 2008. Diversity studies on the endosymbionts of Sesbania rostrata L. Ph.D. Thesis. Tiruchirapalli, India: Bharathidasan University, pp.1-121.
[11] Garg, R.K., Silawat, N., Pramod Sairkar, Neetu, Vijay, Mehrotra, N.N., 2009. RAPD analysis for genetic diversity of two populations of Mystus vittatus (Bloch) of Madhya Pradesh, India. African J. Biotechnol. 8(17), 4032-4038.
[12] Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117.
[13] Gouveia, M.C., Ribeiro, A., Varzea, V.M.P., Rodriguez, C.J., 2005. Genetic diversity in Hemileia vastatrix based on RAPD markers. Mycologia. 97(2), 396-404.
[14] Griffiths, B.S., Ritz, K., Ebblewhite, N., Dobson, G., 1993. Soil microbial community structure: Effects of substrate loding rate. Soil Biol. Biochem. 31, 145-153.
[15] Handley, B.A., Hedges, A.J., Beringer, J.E., 1998. Importance of host plants for detecting the population diversity of Rhizobium leguminosarum biovar. viciae in soil. Soil Biol. Biochem. 30(2), 241-249.
[16] Hartl, D.L., Clark, A.G., 1989. Principles of population genetics. 2nd (ed.) Sinauer Associates, Sunderland, MA.
[17] Kimura, M., Crow, J.F., 1964. The number of alleles that can be maintained in a finite population. Genetics. 49, 725-738.
[18] Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A., Barns, S.M., Belnap, J., 2002. Comparison of soil bacterial communities in rhizosphere of three plant species and the intraspaces in an arid grassland. Appl. Environ. Microbiol. 68, 1854-1863.
[19] Labate, J.A., 2000. Software for population genetic analysis of molecular marker data. Crop Sci. 40(6), 1521-1528.
[20] Laguerre, G., Allard, M.R., Revoy, F., Amarger, N., 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60, 56-63.
[21] Laguerre, G.; Mavingui, P.; Allard, Marie-Reine; Charnay, Marie-Paule; Louvrier, P., Mazurier, Sylvie-Isabelle., Rigottier-Gois, L., Amarger, N., 1996. Typing of Rhizobia by PCR DNA Fingerpinting analysis of Chromosomal and Symbiotic Gene Regions: Application to Rhizobium leguminosarum and its different Biovars. Appl. Environ. Microbiol. 62(6), 2029-2036.
[22] Lewontin, R.C., 1972. The apportionment of human diversity. Evolution Biol. 6, 381-398.
[23] Lynch, J.M. 1990. Introduction: Some consequences of microbial rhizosphere competence for plant and soil. In The Rhizosphere, John Wiley, Essex, pp. 1-10.
[24] Madrzak, C.J., Golinska, B., Kroliczak, J., Pudelko, K., Lazewska, D., Lampka, B., Sadowsky, M.J., 1995. Diversity among field population of Bradyrhizobium japanicum in Poland. Appl. Environ. Microbiol. 61, 1194-1200.
[25] Mahaffee, W.F., Kloepper, J.W., 1997. Temporal changes in the bacterial communities in soil rhizosphere, and endorhiza associated with field grown cucumber (Cucumis sativus L.), Microb. Ecol. 34, 210-223.
[26] Manly, B.F.J., 1985. The Statistics of Natural Selection. UK: London, Chapman and Hall.
[27] Massol-Deya, A.A., Odelson, D.A., Hickey, R.F., Tiedje, J.M., 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA), Ch. 3.3.2. In Molecular Microbial Ecology Manual [Akkermans, A.D.L., van Elsas, J.D. and de Bruijn, F.J. (eds.)], Netherland: Dortrecht, Kluwer Academic Publishers, pp.1-8.
[28] Mathan, N., Parani, M., Parida, A., Nair, S., 1996. Random amplified polymorphic DNA analysis of root-nodulating bacterial strains from Arachis hypogaea with physiological characteristics of both fast and slow growers. Lett. Appl. Microbiol. 23, 89-92.
[29] Nei, M., 1972. Genetic distance between populations. Am. Nat. 106, 283-292.
[30] Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70, 3321-3323.
[31] Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89, 583-590.
[32] Nour, S. M., Fernadez, M. P., Normand, P., Cleyetmarel, J. C.1994. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). International J. Syst. Bacteriol. 44, 511-522.
[33] Nour, S.M., Cleyet-Marel, J.C., Beck, D., Effosse, A., Fernadez, M.P., 1994. Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Can. J. Microbiol. 40, 345-354.
[34] Oliveira, I.R., Vasconcellos, M.J., Seldin, L., Paiva, E., Vargas, M.A., Sa, N.M.H., 2000. Random amplified polymorphic DNA analysis of effective Rhizobium sp. associated with beans cultivated in Brazil Cerrado Soils. Braz. J. Microbiol. 31, 39-44.
[35] Paffertti, D., Scotti, C., Gnocchi, S., Fancelli, S., and Bazzicalupo, M., 1996. Genetic diversity of an Italian Rhizobium meliloti population from different Madicago sativa varieties. Appl. Environ. Microbiol. 62, 2279-2285.
[36] Page, R.D.M., 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Appl. Biosci. 12, 357-358.
[37] Peter J., and Russel, 2006. i Genetics: A Molecular Approach. San Fransico: Pearson Benjamin Cummings.
[38] Pinto, P.P., Paiva, E., Purcino, H., Passos, R.V.M., Sa, N.M.H., 2004. Characterization of rhizobia that nodulate Arachis pintioi by RAPD analysis. Brazilian J. Microbiol. 35, 219-223.
[39] Pinto, P.P., Raposeiras, R., Macedo, A.M., Seldin, L., Paiva, E., Sa., N.M.H. 1998. Effects high temperature on survival, symbiotic performance and genomic modifications of bean nodulating Rhizobium strains. Rev. Microbiol. 29, 295-300.
[40] Prescott, L.M., Harley, J.P., Klein, D.A., 2005. Microbiology. 6th ed. New Delhi: McGraw-Hill Higher Education, pp.392-393.
[41] Prevost, A., and Wilkinson, M.J., 1999. A new system of comparing PCR primers applied to ISSR finger printing of potato cultivars. Theor. Appl. Genet. 98, 107-112.
[42] Rajasekaran, R., Chandrasekaran, R., Muthuselvam, M., Arunachalam, C., and Arunkumar, S., 2015. Classical and Molecular Characterization of Rhizobial Isolates. Biosciences. 81, 31878-31886.
[43] Rajasundari, K., Elamurugu, K., Logeshwaran, P., 2009. Genetic diversity in rhizobial isolates determined by RAPDs. African J. Biotechnol. 8(12), 2677-2681.
[44] Sambrook, J., Fritsch, E.F., and Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press.
[45] Schmidt, E.L., Bankole, R.O., and Bohlool, B.B., 1968. Fluorescent antibody approach to study rhizobia in soil. J. Bacteriol. 95, 1987-1992.
[46] Selenska-Pobell, S., Evguenieva-Hackenberg, E., Radeva, G., Squartini, A., 1996. Characterization of Rhizobium “hedysari” by RFLP analysis of PCR amplified rDNA and by genomic fingerprinting. J. Appl. Bacteriol. 80, 517-528.
[47] Selenska-Pobell, S., Gigova, L., Petrova, N., 1995. Strain-specific fingerprints of Rhizobium galegae generated by PCR with arbitrary and repetitive primers. J. Appl. Bacteriol. 80, 517-528.
[48] Sessitsch, A., Hardarson, G., Akkermans, A.D.L., de Vos, W.M., 1997. Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol. Ecol. 6, 601-608.
[49] Shannon, C.E., Weaver, W., 1949. The Mathematicsl Theory of Communication, Urbana: University of Illinois Press.
[50] Teaumroong, N., Boonkerd, N., 1998. Detection of Bradyrhizobium spp. and B. japonicum in Thailand by primer based technology and direct DNA extraction. Pl. Soil. 204, 127-134.
[51] Thomashow, L.S., Bonsall, R.F., Wwller, D.M., 1997. Antibiotic production by soil and rhizosphere microbes in situ. In manual of Environmental Microbiology (ed Hurst, C.J et al.), American Society for Microbiology, Washington, DC, pp. 493-499.
[52] Versallovic, J., Schneider, M., de Brujin, F.J., Lupski, J.R., 1994. Genome fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods and Cellul. Biol. 5(2), 5-10.
[53] Vincent, J.M., 1970. A manual for the practical study of root-nodule bacteria. In International Biological Programme Hand Book, No.15, Oxford Blackwell, pp.73-97.
[54] Welsh, J., and McClelland, M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218.
[55] Westman, A.L., Kresovich, 1997. Use of molecular marker techniques for description of plant genetic variation. In Biotechnology and Plant Genetic Resources: Conservation and use. [J.A. Callow et al. (ed.)]. New York: CAB International.
[56] Williams, J.G.K., Kubelik, A.R., Kenneth, J., Rafalsky, J.A., Tingey, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.18(22), 6531-6535.
[57] Yeh, F.C., Boyle, T.J., 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot. 129, 157.
[58] Yeh, Francis C., Boyle, T., Rongcai, Y., Ye, Z., Xian, J.M., 1997. Popgene version 1.31, A Microsoft Windows based freeware for population genetic analysis. Canada, Edmonton: Molecular Biology and Biotechnology Centre. University of Alberta.
[59] Young, C.C., Cheng, K.T., 1998. Genetic diversity of fast and slow-growing soybean rhizobia determined by random amplified polymorphic DNA analysis. Biol. Fertil. Soil. 26, 254-256.

Keywords
Rhizobia, DNA profiles, RAPD, Genetic diversity, POPGEN.