Genetically Modified Plant (GMO) Using Hormone and T-DNA Technology: Regulated Gene Expression

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2018 by IJBTT Journal
Volume - 8 Issue - 2                          
Year of Publication : 2018
Authors : ABM Sharif Hossain
DOI :  10.14445/22490183/IJBTT-V8I2P602

Citation

ABM Sharif Hossain "Genetically Modified Plant (GMO) Using Hormone and T-DNA Technology: Regulated Gene Expression", International Journal of Biotech Trends and Technology (IJBTT), V8(2): 7-12 April - June 2018, Published by Seventh Sense Research Group.

Abstract

Genetically modified (GM) technology retains a superlative role to produce GM organism (GMO) and GMO derived food. The review study was carried out employing different innovative research data to attain the latest modern technology in the GMO production like plant, fruit and vegetables and its related gene expression. GMO production using hormones (GA3, IAA, NAA, ABA) and T-DNA/gene transformation in ornamental plant, fruit and vegetables has been described well. GMO using hormonal injection technology, bacteria like Bacillus thuringiensis, tissue culture with Agrobacterium mediated media, cross breeding, inter-stock breeding, swabbing in xylem and phloem technology has been exhibited as innovative from different research data in pumpkin, ladies finger, peach plant, rose, carrot, star fruit, tobacco, tomatoes and S. chacoense plant has been highlighted from different innovative research data and regulated gene expression was documented well. Finally it can be summarized that GMO ornamental plant, flower, fruit and vegetable can be produced by using in vitro tissue culture of leave, shoot and root or in vivo having different concentration of GA3, IAA, NAA, ABA and Agrobacterium tumefaciens (Ti plasmid, genomic DNA/T-DNA) media as well as by injecting in the stem, xylem and phloem, flower, ovary tissue applying swabbing, dipping, dripping and micro spraying methods.

References

1. I. Chen, D. Dubnau. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2 (3): 241–9. 2004. doi:10.1038/nrmicro844.PMID 15083159.
2. HGMF. History of Genetically Modified Foods. umich.edu. Archived from the original on 21 October, 2015.
3. A.B.M.S. Hossain. Plant Biotechnology and Genetic Engineering. LAP Lambart Academic publishing Co. Paperback, Germany. ISBN No. 978365922876-6. Pp433. 2014.
4. C. Chronicle, Biologists invent gun for shooting cells with DNA, Archived 29 October 2013 at the Wayback Machine. p3.1987.
5. A. Büttner-Mainik, et al. Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnology Journal. 9: 373–383. 2011. doi:10.1111/j.1467-7652.2010.00552.
6. A.B.M.S. Hossain. Development of Seedless Star Fruit and its Antioxidant, Biochemical Content and Nutritional Quality by Gibberellic Acid Hormone as Genetically Modified Component. Int. J. Plant Breed. Genet., 10 (1): 23-30. 2015a.
7. A.B.M.S. Hossain. Seedless Pumpkin Vegetable Production Using Gibberellic Acid (GA3) As Plant Hormone and Genetically Modified Technique. Global j. Biology, Agri. and Health Sciences 4(3): 6-8. 2015b.
8. A.B.M.S. Hossain. Plant Physiology and Biotechnology:Recent innovation LAP Lambart Academic publishing Co. Paperback, Germany. ISBN No. 97836930673-0. Pp603.
9. A.B.M.S. Hossain, F. Mizutani, J. M. Onguso and Ali R. El-Shereif. Effect of interstock and spiral bark ringing on the growth and yield of peach trees. Bulgarian Journal of Agriculture. 11.3.316-320.2005.
10. J.R Gasdaska et al. Advantages of Therapeutic Protein Production in the Aquatic Plant Lemna". BioProcessing Journal Mar/Apr 2003 pp 49–56.2003.
11. PO. 2013. "Engineering algae to make complex anti-cancer `designer` drug" PhysOrg, Retrieved 15 April, 2013.
12. A. Baur, R. Reski, G. Gorr. "Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens". Plant Biotech. J. 3 (3): 331–340. 2005.
13. W. Gali, K. Yeshayahou. FDA approves Protalix Gaucher treatment Archived 29 May 2013 at the Wayback Machine. 2012.
14. Nosowitz, Dan. Suntory Creates Mythical Blue (Or, Um, Lavender-ish) Rose. Popular Science, Retrieved 30 August, 2012.
15. Kyodo S. Suntory to sell blue roses overseas. The Japan Times, Retrieved 30 August, 2012.
16. D. Jack Production of transgenic tomato. https://www.google.com.sa/, Fwww.ied.edu.hk%2Fbiotech%2Feng. https://www.ars.usda.gov/oc/images/photos/k5915-1. 2006.
17. C.J. Steven, B. F. Andrew. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana". The Plant Journal. 16 (6): 735–743. 1998. doi:10.1046/j.1365-313x.1998.00343.x. ISSN 1365-313X. PMID 10069079.
18. U. Yoshihito, Y. Akira, S. Junta. Phylogenetic position of the marine subdivision of Agrobacterium species based on 16S rRNA sequence analysis. The Journal of General and Applied Microbiology. 43 (4): 243–247. 1997. doi:10.2323/jgam.43.243. PMID 12501326.
19. U. Yoshihito, H. Akio, Y. Akira, S. Junta. "Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. Nov., Stappia aggregata sp. The Journal of General and Applied Microbiology. 44 (3): 201–210. 1998. doi:10.2323/jgam.44.201. PMID 12501429.
20. S. Lev-Yadun, R. Sederoff. Grafting for transgene containment. Nature Biotechnology 19: 1104. 2001.
21. S. Tiwari, R. R. Youngman. Transgenic Bt Corn Hybrids and Pest Management in the USA. pp15-36. 2011.
22. L.W. Kannenberg. Trangenic plant: An tintroduction and Resource guide.2004.. Department of Soil and Crop Sciences at Colorado State University, 2004. http://www.ontariocorn.org/ ocpmag/dec99feat.html.
23. Y. Marco. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signaling. New Phytologist 194: 1035–1045. 2012. doi: 10.1111/j.1469-8137.2012.04113.x
24. I.E. Henson. Effects of atmospheric humidity on abscisic acid accumulation and water status in leaves of rice (Oryza sativa L.). Ann. Bot.54, 569-582. 1984.
25. K Skriver, J. Mundy. Gene expression in response to abscisic acid and osmotic stress.Plant Cell. 1990 June; 2(6): 503–512. 1990. PMCID: PMC159906.
26. L. Dure, S.C. Greenway, G.A. Galau. Developmental biochemistry of cottonseed embryogenesis and germination. XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20, 41 62-41 68.1981.
27. J. Baker, C. Steele, and L. Dure. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant MOI. Biol. 11, 277-291. 1988.
28. C. Zalejski, S. Paradis, R. Maldiney, Y. Habricot, E. Miginiac, J. Rona, E. Jeannette. Induction of Abscisic Acid-Regulated Gene Expression by Diacylglycerol Pyrophosphate Involves Ca2+ and Anion Currents in Arabidopsis Suspension Cells. Plant Physiol. 141(4): 1555–1562. 2006. doi: 10.1104/pp.106.080218
29. C, Zalejski, Z. Zhang A-L, Quettier, R. Maldiney, M. Bonnet, M. Brault, C. Demandre, E. Miginiac, J-P, Rona, B, Sotta. Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J 42: 145–152. 2005. [PubMed]
30. J.A. Ozga , J. Yu , D.M. Reinecke . Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds. Plant Physiol. 131(3):1137-46. 2003.
31. A.D. Breitel ,L. Chappell-Maor , S. Meir, I. Panizel, C. P. Puig, Y. Hao, T. Yifhar, H. Yasuor, M. M. Bouzayen, A. G. Richart, I. Rogachev, A. Aharoni. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening. 2016. https://doi.org/10.1371/journal.pgen.1005903
32. M. Ishibashi, H. Yoshikawa, Y. Uno. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin International Journal of Molecular Sciences. 2017.
33. T. Bouquin, C. Meier, R. Foster, M. E. Nielsen, J. Mundy. Gene Expression by Gibberellin and Brassinosteroid1 Plant Physiol. Oct; 127(2): 450–458. . 2001.
34. A Kauschmann, A Jessop, C Koncz, M Szekeres, L Willmitzer, T Altmann. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J. 9:701–713. 1996.
35. N. Leonhardt, J Kwak, N. Robert, D. Waner, G Leonhardt, J Schroeder. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16: 596–615. 2004. [PMC free article] [PubMed].

Keywords
GMO, T-DNA, plant hormone, Agrobacterium, gene expression