Advances in Genetic Engineering of Primary Grain Legume Crops: a Review Study

International Journal of Biotech Trends and Technology (IJBTT)
© 2017 by IJBTT Journal
Volume - 7 Issue - 3                        
Year of Publication : 2017
Authors : Vikrant, K.P. Prabisha
DOI :  10.14445/22490183/IJBTT-V22P602


Vikrant, K.P. Prabisha "Advances in Genetic Engineering of Primary Grain Legume Crops: a Review Study", International Journal of Biotech Trends and Technology (IJBTT), V7(3): 9-16 Jul - Sep 2017, Published by Seventh Sense Research Group.


In general, the seeds of many legumes are rich in both oil and protein; therefore, these grain legumes are commonly used as an important staple food worldwide. Transgenetic manipulation or production of transgenic crops has been needed for genetic enhancement as part of plant breeding programmes. This study is an attempt to evaluate the advancements in technology based on genetic transformation in major primary grain legume crops such as; chickpea, pigeon pea, garden pea, mung bean and lentil. Moreover, this study also involves to analyzing the screening of the competent explants as target tissues for gene delivery, mode of gene transformation, and further selection of transgenic tissues followed by regeneration of transgenic plantlets. Although most reports on introducing genes into grain legumes are based upon the use of Agrobacterium tumefaciens during transformation experiments, however, there have been also parallel efforts involving the use of biolistics and electroporation methods to produce transgenic grain legume crops with essential improved traits.


[1] Nisbet, G.S. and Web, K.J., “Transformation of legumes” In: Biotechnology in Agriculture and Forestry: Legume and Oilseeds Crops (Ed., Y.P.S. Bajaj), Springer and Verlag Berlin, Heidelberg, Germany, pp. 38-48, 1990
[2] Chandra, A. and Pental, D., “Regeneration and genetic transformation of grain legumes: An overview”, Current Science,Vol. 84 (3): 381-387, 2003
[3] Clarke, J.L., Daniell, H. and Nugent, J.M., “Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions”. Plant Mol. Biol., 76:207–209, 2011
[4] Ochatt, S.J. and Power, J.B., “Plant regeneration from cultured protoplasts of higher plants”, In: Moo-Young, M., Warren, G.S. and Fowler, M.W. (eds) Comprehensive biotechnology 2nd supplement, Pergamon Press, New York, pp 99–127, 1992
[5] Yadav, S.S., Kumar, J., Yadav, S.K., Singh, S., Yadav, V.S., Turner, N.C. and Redden, R., “Evaluation of Helicoverpa and drought resistance in desi and kabuli chickpea”, Plant Genetic Resources: Characterization and Utilization, 4: 198-203, 2006
[6] Khatodia, S., Kharb, P., Batra, P., Kumar, P. A. and Chowdhury, V.K., “Molecular characterization of Bt chickpea (Cicer arietinum L.) plants carrying cry1Aa3 gene”, Int. J. Curr. Microbiol. App. Sci., 3(8): 632-642, 2014
[7] Fontana, G.S., Santini, L., Caretto, S., Frugis, G. and Mariotti, D., “Genetic transformation in the grain legume Cicer arietinum L. (chickpea)”, Plant Cell Rep., 12:194–198, 1993
[8] Krishnamurthy, K.V., Suhasini, K., Sagare, A.P., Meixner, M., de Kathen, A., Pickardt, T. and Schieder, O., “Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes”, Plant Cell Rep., 19:235–240, 2000
[9] Polowick, P.L., Baliski, D.S. and Mahon, J.D., “Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L): gene integration, expression and inheritance”, Plant Cell Rep., 23:485–491, 2004.
[10] Sarmah, B.K., Moore, A., Tate, W., Molvig, L., Morton, R.L., Rees, D.P., Chiaiese, P., Chrispeels, M.J., Tabe, L.M. and Higgins, T.J.V., “Transgenic chickpea seeds expressing high level of a bean ?- amylase inhibitor”, Mol. Breed., 14:73–82, 2004
[11] Senthil, G., Williamson, B., Dinkins, R.D. and Ramsay, G., “An efficient transformation system for chickpea (Cicer arietinum L.)”, Plant Cell Rep., 23:297–303, 2004
[12] Tewari-Singh, S., Sen, J., Kiesecker, H., Reddy, V.S., Jacobsen, H.J. and Guha-Mukherjee, S., “Use of an herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea”, Plant Cell Rep., 22:576–583, 2004
[13] Kar, S., Johnson, T.M., Nayak, P. and Sen, S.K., “Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.)”, Plant Cell Rep., 16:32–37, 1996
[14] Polowick, P.L., Quandt, J. and Mahon, J. D., “The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions”, Plant Sci., 153:161–170, 2000
[15] Husnain, T., Malik, T., R?zauddin, S. and Gordon, M.P., “Studies on the expression of marker genes in chickpea”, Plant Cell Tissue Org. Cult. 49: 7-16, 1997
[16] Joersbo, M., Peterson, S. G. and Okkels, F. T., Physiol. Plant., 105: 109–115, 1999
[17] Trick, H.N. and Finer, J.J., “Sonication Assisted Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L) Merill] embryogenic suspension culture tissue”, Plant Cell Rep., 17:482–488, 1998
[18] Santarem, E.R., Trick, H.N., Essig, J.S. and Finer, J.J., “Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: Optimization of transient expression”, Plant Cell Rep., 17:752–759, 1998
[19] Charity, J.A., Holland, L., Donaldson, S.S., Grace, L. and Walter, C., “Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum infiltration”, Plant Cell Tissue Organ Cult., 70:51–60, 2002
[20] Park, B.J., Liu, Z., Kanno, A. and Kameya, T., “Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus”, Plant Cell Rep., 24:494–500, 2005
[21] Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M. and Wang, K., “Improved cotyledonary node method using an alternative explants derived from mature seed for efficient Agrobacterium-mediated soybean transformation”, Plant Cell Rep., 25:206–213, 2006
[22] Indurker, S., Misra, H. and Eapen, S., “Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimization of different factors”, Physiol. Mol. Biol. Plants, 16(3):273–284, 2010
[23] Pathak, M.R. and Hamzah, R.Y., “An effective method of sonicated-assisted Agrobacterium-mediated transformation of chickpea”, Plant Cell Tissue Organ Cult., 93: 65-71, 2008
[24] Kar, S., Basu. D., Das, S., Ramakrishnan, N.A., Mukherjee, P., Nayak, P. and Sen, S.K. “Expression of Cry1A(c) gene of Bacillus thuringiensis in transgenic chick pea plants inhibits development of pod borer (Heliothis armigera) larvae”, Transgenic Res., 6:177–185, 1997
[25] Sanyal, I., Singh, A.K., Kaushik, M. and Amla, D.V., “Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera”, Plant Sci., 168:1135–1146, 2005
[26] Shivani, I., Hari, M. and Susan, E., “Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment”, Plant Cell Rep., 26: 755-763, 2007
[27] Geetha, N., Venkatachalam, P. and Lakshmisita, G., “Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis”, Plant Biotechnol., 16(3):213–8, 1999
[28] Mohan, M.L. and Krishnamurthy, K.V., “Plant regeneration from decapitated mature embryonic axis and Agrobacterium-mediated genetic transformation of pigeon pea”, Biol. Plant., 49(4):519–27, 2003
[29] Krishna, G., Reddy, P.S., Ramteke, P.W. and Bhattacharya, P.S., “Progress of tissue culture and genetic transformation research in pigeon pea pea [Cajanus cajan (L.) Millsp.]”, Plant Cell Rep., 29(10):1079–95, 2010
[30] Lawrence, P.K. and Koundal, K.R., “Agrobacterium tumefaciens- mediated transformation of pigeon pea (Cajanus cajan L. Millsp.) and molecular analysis of regen-erated plants”, Curr. Sci., 80(11): 1428–32, 2001
[31] Surekha, Ch., Beena, M.R., Arundhati, A., Singh, P.K., Tuli, R, Dutta-Gupta, A. and Kirti, P.B., “Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera”, Plant Sci., 169 (6):1074–80, 2005
[32] Verma, A.K. and Chand, L., “Agrobacterium-mediated transformation of pigeon pea (Cajanus cajan L.) with uidA and CryIA(b) genes”, Physiol. Mol. Biol. Plant., 11(1):99–109, 2005
[33] Sharma, K.K., Lavanya, K. and Anjaiah, A., “Agrobacterium-mediated production of transgenic pigeon pea (Cajanus cajan [L.] Millsp.) expressing the synthetic BT CRY1AB Gene”, In Vitro Cell Dev Biol.-Plant., 42(2):165–73, 2006
[34] Ramu, S.V., Rohini, S., Keshavareddy, G., Neelima, M.G., Shanmugam, N.B., Kumar, A.R.V., et al. “Expression of a synthetic cry1AcF gene in transgenic pigeon pea confers resistance to Helicoverpa armigera”, J. Appl. Entomol., 136(9):675–87, 2012
[35] Kumar, S.M., Kumar, B.K., Sharma, K.K. and Devi, P., “Genetic transformation of pigeon pea with rice chitinase gene”, Plant Breed., 123(5):485–9, 2004
[36] Thu, T.T., Mai, T.T.X., Dewaele, E., Farsi, S., Tadesse, Y., Angenon, G. and Jacobs, M., “In vitro regeneration and transformation of pigeon pea (Cajanus cajan (L.) Millsp.)”, Mol. Breed., 11(2):159–68, 2003
[37] Thu, T.T., Dewaele, E., Trung, L.Q., Claeys, M., Jacobs, M. and Angenon, G., “Increasing lysine levels in pigeon pea (Cajanus cajan (L.) Millsp.) seeds through genetic engineer-ing”, Plant Cell Tiss. Org. Cult. 91(2):35–143, 2007
[38] Satyavathi, V.V., Prasad, V., Khandelwal, A., Shaila, M.S. and Sita, G.L., “Expression of hemagglutinin protein of Rinder pest virus in transgenic pigeon pea (Cajanus cajan L.) plants”, Plant Cell Rep., 21(7): 651–8, 2003
[39] Prasad, V., Satyavathi, V.V., Valli, S.K.M., Khandelwal, A., Shaila, M.S. and Sita, G.L., “Expression of biologically active hemagglutinin-neuraminidase protein of Peste des petits ruminants virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.]”, Plant Sci., 166 (1):199–205, 2004
[40] Bhatnagar-Mathur, P. and Sharma, K.K., “Genetic transformation of pigeon pea: An overview”, Legume Perspectives, pp-35-36, 2016
[41] Dayal, S., Lavanya, M., Devi, P. and Sharma, K.K., “An efficient protocol for shoot generation and genetic transformation of pigeon pea (Cajanus cajan [L.] Millsp.) using leaf explants”, Plant Cell Rep., 21(11):1072–9, 2003
[42] Rao, S. K., Sreevathsa, R., Sharma, P.D., Keshamma, E. and Kumar, U.M., “In planta transformation of pigeon pea: method to recalcitrancy of the crop to regeneration in vitro”, Physiol. Mol. Biol. Plants., 14(4):321–8., 2008
[43] Dafny-Yelin, M. and Tzfira, T., “Delivery of multiple transgenes to plant cells”, Plant Physiol., 145(4):1118–28, 2007
[44] Schroeder, H.E., Scholtz, A.H., Wardley-Richardson, T., Spencer, D. and Higgins, T.J.V., “Transformation and regeneration of two cultivars of pea (Pisum sativum L.)”, Plant Physiol., 101:751–757, 1993
[45] Richter, A., De Kathen, A., De Lorenzo, G., Briviba, K., Hain, R., Ramsay, G., Jacobsen, H. J. and Kiesecker, H., “Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera)”, Plant Cell Reports, 25: 1166-1173, 2006
[46] Hassan, F., Meens, J., Jacobsen, H. J. and Kiesecker, H., “A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro”, Journal of biotechnology, 143: 302-8, 2009
[47] Hobbs, S.L.A., Jackson, J.A. and Mahon, J.D., “Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens”, Plant Cell Rep., 8:274–277, 1989
[48] Hussey, G., Johnson, R.D. and Warren, S., “Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes”, Protoplasma, 148:101–105, 1989
[49] Schaerer, S. and Pilet, P-E., “Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and rhizogenes”, Plant Sci., 78:247–258, 1991
[50] Puonti-Kaerlas, J., Stabel, P. and Eriksson, T., “Transformation of pea (Pisum sativum L.) by Agrobacterium turnefaciens”, Plant Cell Rep., 8:321–324, 1989
[51] De Kathen, A. and Jacobsen, H-J., “Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and co-integrate vectors”, Plant Cell Rep., 9:276–279, 1990
[52] Schroeder, H.E., Gollasch, S., Tabe, L.M. and Higgins, T.J.V., “Recent advances in gene transfer to peas”, Pisum Genet., 26:1–5, 1994
[53] Bean, S.J., Gooding, P.S., Mullineaux, P.M. and Davies, D.R., “A simple system for pea transformation”, Plant Cell Rep., 16:513–519, 1997
[54] Grant, J.E., Cooper, P.A., Gilpin, B.J., Hoglund, S.J., Pither-Joyce, M.D. and Timmerman-Vaughan, G.M., “Kanamycin is effective for selecting transformed peas”, Plant Sci., 139:159–164, 1998
[55] Nadolska-Orczyk, A. and Orczyk, W., “Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.)”, Mol. Breed., 6:185–194, 2000
[56] Pniewski, T. and Kapusta, J., “Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacities by using hyper-virulent Agrobacterium tumefaciens strains”, J Appl. Genet., 46:139–147, 2005
[57] Svabova, L., Smykal, P. and Griga, M., “Agrobacterium-mediated transformation of pea (Pisum sativum L.): transformant production in vitro and by non-tissue culture approach”, In: Kharkwal, M.C. (ed) Food legumes for nutritional security and sustainable agriculture. IS-GPB, New Delhi, India, pp 208–220, 2008
[58] Grant, J.E., Cooper, P.A., McAra, A.E. and Frew, T.J., “Transformation of peas (Pisum sativum L.) using immature cotyledons”, Plant Cell Rep., 15:254–258, 1995
[59] Grant, J.E., Thomson, L.M.J., Pither-Joyce, M.D., Dale, T.M. and Cooper, P.A., “Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.)”, Plant Cell Rep., 21:1207–1210, 2003
[60] Puonti-Kaerlas, J., Eriksson, T. and Engstrom, P., “Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium-mediated gene transfer”, Theor. Appl. Genet. 80:246–252, 1990
[61] Schroeder, H., Gollasch, S., Moore, A., Tabe, I. M, Craig, S., Ilardie, D. C., Chrispeels, M. J., Spencer, D. and Higgins, T. J. V., “Bean-amylase inhibitor resistance to the pea weevil (Bruchrrs pisorum) in transgenic peas (Pisum furliurn L.)”, Plant Physiology, 107: 1233-1239, 1995
[62] Charity, J. A., Anderson, M.A., Birttisnich, D.J., Whitecross, M. and Higgins, T.J.Y., “Transgenic tobacco and pea expressing proteinase inhibitor from Nicotiana alata have increased insect resistance”, Molecular Breeding 5, 1999
[63] Warkentin, T.D., Jordan, M.C. and Hobbs, L.A., “Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea (Pisum sativum L.) tissues”, Plant Sci., 87:171–177, 1992
[64] Molna´r, Z., Jenes, B., O ¨ rd€og, V.V., “Genetic transformation of pea (Pisum sativum L.) via particle bombardment”, 3rd international symposium in the series recent advances in plant biotechnology, from cells to crops, Stara Lesna, Slovakia. Biologia, 54(7):50, 1999
[65] Kohler, F., Golz, C., Eapen, S., Kohn, H. and Schieder, O., “Stable transformation of moth bean Vigna aconitifolia via direct gene transfer”, Plant Cell Reports, 6: 313-317, 1987
[66] McCabe, D.E., Swain, W.F., Martinell, B.J. and Christou, P., “Stable transformation of soybean (Glycine max) by particle acceleration”, Biotechnology, 6: 923-926, 1988
[67] Puonti-Kaerlas, J., Ottosson, A. and Eriksson, T., “Survival and growth of pea protoplasts after transformation by electroporation”, Plant Cell Tissue Organ Cult., 30:141–148, 1992
[68] Jaiwal, P.W., Kumari, R., Ignacimuthu, S., Potrykus, I. and Sautter, C., “Agrobacterium tumefaciens-mediated genetic transformation of mung bean (Vigna radiata L. Wilczek) - a recalcitrant grain legume”, Plant Sci., 161:239–247, 2001
[69] Jaiwal, P. K., Sautter, C. and Potrykus, I., Curr Sci., 75: 41–45, 1998
[70] Suraninpong, P., “Introduction and expression of cholesterol oxidase gene in a bacterium [Escherichia coli M15 (pREP4)] and mung bean [Vigna radiata (L.) Wilczek]”, PhD Thesis, Suranare University of Technol, pp162, 2002
[71] Saini, S.R., Singh, R.P. and Jaiwal, P.K., “Agrobacterium tumefaciens-mediated transfer of Phaseolus vulgaris ?-amylase inhibitor-1 gene into mung bean Vigna radiata (L.) Wilczek using bar as selectable marker”, Plant Cell Rep., 26:187–198, 2007
[72] Tazeen, S. and Mirza, B., “Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.) Wilczek”, Pakistan J Bot., 36:887–896, 2004
[73] Islam, M.N. and Islam, K.T., “Agrobacterium-mediated genetic transformation of mung bean (Vigna radiata (L.) Wilczek)”, Plant Tissue Cult Biotechnol., 20:233–236, 2010
[74] Warkentin, T.D. and McHugan, A., “Agrobacterium-mediated GUS gene expression in lentil tissues”, Plant Cell Reports, 11: 274-278, 1992
[75] Hashem, R., “Improvement of lentil (Lens culinaris Medik.) through genetic transformation”, Ph.D. Thesis, University, Hannover, Germany, 162 pp, 2007
[76] Khatib, F., Makris, A., Yamaguchi-Shinozaki, K., Kumar, S., Sarker, A., Erskine, W. and Baum, M., “Expression of the DREB1A gene in lentil (Lens culinaris) transformed with the Agrobacterium system”, Crop Pasture Sci., 62:488–495, 2011
[77] Warkentin, T.D. and McHughen, A., “Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens”, Plant Cell Rep., 10:489–493, 1991.
[78] Braun, A.C., “A physiological basis for autonomous growth of crown gall tumor cell”, Proc. Natl. Acad. Sci., USA. 44: 344–9, 1958.
[79] Akcay, U.C., Mahmoudian, M., Kamci, H., Yucel, M. and Oktem, H. A., “Agrobacterium tumefaciens -mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik)”, Plant Cell Rep., 28: 407–417, 2009.
[80] Sarker, R.H., Biswas, A., Mustafa, B.M., Mahbub, S. and Hoque, M.I., “Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.)”, Plant Cell Tissue Organ Cult., 13:1–12, 2003.
[81] Gulati, A., Schryer, P. and McHughen, A., “Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment”, In Vitro Cell Dev Biol Plant, 38:316–324, 2002.
[82] Homrich, M.S., Wiebke-Strohm, B., Weber, R.L.M. and Bodanese-Zanettini, M.H., “Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants”, Genetics and Molecular Biology, 35: 998-1010, 2012.

Grain Legume, Agrobacterium, Biolistics, Electroporation, gus expression, Transgenics.