Salinity Effects on Direct Shoot Regeneration of Two Male Populus Clones

International Journal of Biotech Trends and Technology (IJBTT)
© 2017 by IJBTT Journal
Volume - 7 Issue 1                          
Year of Publication : 2017
Authors : Fadia El-Sherif, Enas Safaa Ibrahim, Yun-Kiam Yap
DOI :  10.14445/22490183/IJBTT-V20P601


Fadia El-Sherif, Enas Safaa Ibrahim, Yun-Kiam Yap "Salinity Effects on Direct Shoot Regeneration of Two Male Populus Clones", International Journal of Biotech Trends and Technology (IJBTT), V7(1): 1-9 Jan to Mar 2017. Published by Seventh Sense Research Group.


Plant regeneration from leaf and root of two Populus clones, P. tremula L. and hybrid P.tremula L. x P. tremuloides "Michx”, under different salinity levels (control, 8, 12 and 14 dS/m) were investigated. The exposure of salinity stress to both leaves and roots explants during regeneration stage decreased the number of shoots/explant, the height of regenerated plantlets and explant weight. In addition, increased salinity level also decreased the mean values of thickness of midrib, mesophyll tissue, and the diameter of vascular bundle and biggest xylem vessels of both clones. Consistent with the decrease in regeneration and growth, the chlorophyll a and b, as well as leaf carotenoid content of the regenerated explants were reduced with increasing sodium ion and the ratio of Na+/K+ and Na+/Ca2+ ions.


1. Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38: 287-290.
2. Akram Z, Rezaneja F, Safarnejad A (2010) In vitro selection for NaCl tolerance in Thymus vulgaris L. Journal of Cell and Molecular Research 2 (2): 86-92.
3. An P, Inanaga S, Li X, Schimizu H, Tanimoto E (2003). Root characteristics in salt tolerance. Root Res 12:125-132.
4. A.O.A.C. (1980) Official Methods of Analysis (13thed.).Arlington, VA: Association of Official Analytical Chemists Inc.
5. Atabayeva S, Nurmahanova A, Minocha S, Ahmetova A, Kenzhebayeva S, Aidosova S, Nurzhanova A, Zhardamalieva A, Asrandina S, Alybayeva R, Li T (2013) The effect of salinity on growth and anatomical attributes of barley seedling (Hordeumvulgare L.). African Journal of Biotechnology 12(18): 2366-2377.
6. Belda RM, Ho LC (1993) Salinity effects on the network of vascular bundles during tomato fruit development. J HorticSci 68:557-56.4.
7. Beloualy N, Bouharmont J (1992) NaCl tolerant plants of Poncirus trifoliata regenerated from tolerant cell lines. Theor Appl Genet 83: 509-514.
8. Beniwal RS, Langenfeld-Heyser R, Polle A (2010) Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental & Exerimental Botany 69: 189-197.
9. Beritognolo I, Piazzai M, Benucci S, Kuzminsky E, Sabatii M, Mugnozza G.S, Muleo R (2007) Functional characterization of three Italian Populus alab L. genotypes under salinity stress. Trees-Structure and Function 21: 465-477.
10. Bizet F, Bogeat-Triboulot M-B, Montpied P, Christophe A, Ningre N, Cohen D, Hummel I (2015) Phenotypic plasticity toward water regime: response of leaf growth and underlying candidate genes in Populus. Physiologia Plantarum 154: 39-53.
11. Cha-um S, Supaibulwatana K, Kirdmanee C (2004) Physiological responses of Thai neem (Azadirachtasiamensis Val.) to salt stress for salt-tolerance screening program. Sci. Asia 30:17-23.
12. Cha-um S, KirdmaneeC (2008) Assessment of salt tolerance in eucalyptus, rain tree and thai neem under laboratory and the field conditions. Pak.J Bot 40(5): 2041-2051.
13. Chen S, Li J, Wang S, Huttermann A, Altman A (2001) Salt, nutrient uptake transport and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees-Structure and Function 15: 186-194.
14. Chen S, Li J, Fritz E, Wang S, Huttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecology and Management 168: 217-230.
15. Chen S, Li J, Wang S, Fritz E, Huttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and Populus tomentosa. Canadian Journal of Forest Research 33: 967-975.
16. Dolatabadian A, Modarressanavy SAM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol 3(1): 41-45.
17. El Sherif F (2013) In vitro NaCl tolerances of Artemisia dracunculus. Int J Med Arom Plants 2: 549-557.
18. El Sherif F, Khattab S (2011) Direct shoot regeneration from leaf, root and stem internode segments of male poplar trees and the molecular analysis of variant regenerated plants. Journal of American Science 7(8): 200-206.
19. Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I (2007) Response of the cherry rootstock tosalinity in vitro. Biol. Plant., 51: 597–600.
20. Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba in response to salt stress. Biological Plant 42: 249-257.
21. Gandonou C, Abrini J, Idaomar M, Skali SN (2005) Response of Sugarcane (Saccharum sp.) varieties to embryogenic callus induction and in vitro salt stress. African Journal of Biotechnology. 4(4):350-354.
22. Gupta B, Huang B (2014) Mechanism of salinity tolerance in Plants: Physiological, Biochemical, and Molecular characterization. Mechanism of salinity tolerance in Plants: Physiological, Biochemical, and Molecular characterization. J. Genomics. doi: 10.1155/2014/701596.
23. Hernandez JA, Olmos E,Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167.
24. Hu Y, Schmidhalter U (2001) Reduced cellular cross sectional area in the leaf elongation zone of wheat causes a decrease in dry weight deposition under saline conditions. Aust J Plant Physiol 28:165-170.
25. Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Polle A (2012) Salt stress induces the formation of a novel type of pressure wood in two Populus species. New Phytologist 194: 129-141.
26. Jiang H, Peng SM, Zhang S, Li XG, Kropelainen H, Li CY (2012) Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance. J Exp Bot 63: 3709-3726.
27. Jouve L., Hoffmann L., Hausman JF (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): Involvement of oxidation and osmoregulation metabolism. Plant Biology 6: 74-80.
28. Junghans U, Polle A, DuchtingP, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant, Cell & Environment 29: 1519-1531.
29. Kafkafi U, Bernstein N (1996) Root Growth under Salinity Stress, Plant Roots – the Hidden Half, 463–499. Marcel Dekker, New York, U.S.A.
30. Khasa PD, Hambling B, Kernaghan G, Fung M, Ngimbi E (2002) Genetic variability in salt tolerance of selected boreal woody seedlings. Forest Ecol Manage 165: 257-269.
31. Kilicet S, Cavusoglu K, Kabar K (2007) Effects of 24- epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDU Fac Arts Sci J Sci. 2:41-52.
32. Kumar V, Shriram V, Nikam TD, Jawaliand N, Shitole MG (2008) Sodium chloride induced changes in mineral elements in indica rice cultivars differing in salt tolerance. J. Plant Nutr 3: 1999–2017.
33. Melger JC, Syvertsen JP, García-SánchezF (2008) Can elevated CO2 improve salt tolerance in olive tree? J Plant Physiol 165: 631-640.
34. Mitra A, Banerjee K (2010) Pigments of Heritiera fomes seedlings under different salinity conditions: perspective sea level rise. Mesopot. J Mar Sci. 25(1): 1-10.
35. Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant physiology 13: 473–497.
36. Nguyen N.T, Moghaieb REA, Seneoka H, Fujita K (2004) RAPD makers associated with Acacia auriculiformis and Acacia mangium. Plant Science 167(4): 797-805.
37. Ochatt SJ, Marconi PL, Radice S, Arnozis PA, Caso OH (1999) In vitro recurrent selection of potato: production and characterization of salt-tolerant cell lines and plants. Plant Cell, Tiss Organ Cult 55: 1-8.
38. Ola HAE, Reham EF, Eisa SS, Habib SA (2012) Morpho-anatomical changes in salt stressed kallar grass (Leptochloafusca L. Kunth). Res J Agric Biol Sci 8(2): 158-166.
39. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349.
40. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Tree 18: 167-174.
41. Piper, O.S. (1947) Soil and plant analysis pp.258-275. University of Adelaide, Adelaide, Australia.
42. Polle A, Chen S (2015) On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of tress to extreme habitats. Plant, Cell and Environment 38: 1794-1816.
43. Priya AM, Pandian SK, Ramesh M. (2011) Effect of NaCl on in vitro plant regeneration from embryogenic callus cultures of `cv IR 64` indica rice (Oryza sativa L.) African Journal of Biotechnology 10(36): 6947-6953.
44. Rashid P, Karmoker JL, Chakrobortty S, Sarker BC (2004) The effect of salinity on ion accumulation and anatomical attributes in mungbean (Phaseolus radiates L. cv. BARI-3) seedlings. Int J.Agri Biol 6(3): 495-498.
45. Reddy PJ, Vaidyanath K (1986) In vitro characterization ofsalt stress effects and the selection of salt-tolerant plants in rice (Oryza sativa L.). Theor Appl Genet 71: 757-760.
46. Sajid ZA, Aftab F (2014) Plant regeneration from in-vitro selected salt tolerant callus cultures of Solanum tuberosum L. Pak J Bot 46(4): 1507-1514.
47. Safarnejad A, (2004) Chractrization of somaclones of alfalfa (Medicago Sativa L.) for drought tolerance. J Agric Sci Technol: 121-127.
48. Scandalios JG (1993) Oxygen stress and super oxide dismutase activity. Plant Physiol. 101: 7-12.
49. Shahid, MA., Ashraf MY, Pervez MA, Ahmad R, Balal RK, Garcia-Sanchez F (2013). Impact of salt stress on concentration of Na+, Cl- and organic solutes in pea cultivars. Pak J Bot 45 (3):755-761.
50. Shankhdhar D, Shankhdhar SC, Mani SC, Pant RC (2000) In vitro selection for salt-tolerance in rice. Biol Plant 43: 477-480.
51. Schwabele K.A., K. Iddo and K.C. Knap. (2006) Drain water management for salinity mitigation in.
52. irrigated agriculture. Am. J. Agric. Ecol., 88: 133-140.
53. Singh AK, Singh RA, Kumar S (2008) Influence of salinity on seedling growth and metabolism in maize genoytypes. Indian J Plant Physiol 13: 95-99.
54. Sixto H, Grau JM, Alba N, Alia R (2005). Response to sodium chloride in different species and clones of genus Populus L. Forest 78: 93-104.
55. Statsoft, Inc., 2001. STATISTICA for Windows (software-system fur Datenanalyse) Version 6.http:/
56. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90: 681-689.
57. Tewary PK, Sharma A, Raghunath MK, Sarkar A (2000) In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses. Plant Growth Reg 30: 17-21.
58. Verma S, Mishra SN, (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol Mol Biol 162: 669-677.
59. Wilde SA, Corey RB, Lyer JG, Voight GK (1985) Soil and plant analysis for Tree Culture P. 93-106, 3rd ed. Oxford and IBM Publishing Co., New Delhi.
60. Willey RL (1971) Microtechnique. In: A Laboratory Guide, McMillan Publishing Inc., NY, p. 99.
61. Winicov I (1993) cDNA encoding putative zinc finger motifs from salt tolerant alfalfa (Medicago sativa L.) cells. Plant Physiology 102:.681-682.
62. Xioa XW, Yang F, Zhang S, Korpelainen H, Li CY (2009) Physiological and proteomic responses of two contrasting Populu scathayana population to drought stress. Physiol Plant 136: 150-168.
63. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: A review. J Environ Biol 32: 667-685.
64. Yang YN, Jiang H, Wang ML, Korpelainen H, Li CY (2015) Male poplars have a stronger ability to balance growth and carbohydrate accumulation that do females in response to a short-term potassium deficiency. Physiologia Plantarum 155: 400-413.
65. Zahoor, A.S.,and Faheem, A. (2014). Plant regeneration from in vitro-selected salt tolerant callus cultures of Solanum tuberosum L. Pakistan Journal of Botany, 46, 1507–1514.
66. Zhang S, Chen FG, Peng SM, Ma WJ, Korpelainen H, Li CY (2010a) Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress. Proteomics 10: 2661-2677.
67. Zhang S, Lu S, Xu X, Korpelainen H, Li CY (2010b) Changes in antioxidant enzyme activities and isozyme profiles in leaves of male and female Populus cathayana infected with Melampsora larici-populina. Tree Physiol 30: 116-128.
68. Zhang S, Chen LH, Duan BL, Korpelainen H, Li CY (2012) Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. For Ecol Manage 275: 68-78.
69. Zhu, J.K. 2001. Plant salt tolerance. Trends Plant Sci., 6: 66-71.

In vitro, Populus tremula, hybrid poplar, salinity.