Comprehensive study on reduction of toxicity of pollutants by microbial transformation
|
International Journal of Biotech Trends and Technology (IJBTT) | |
© 2016 by IJBTT Journal | ||
Volume - 6 Issue - 1 |
||
Year of Publication : 2016 | ||
Authors : Oishee Chatterjee, Sanchit Seth |
Citation
Oishee Chatterjee, Sanchit Seth "Comprehensive study on reduction of toxicity of pollutants by microbial transformation", International Journal of Biotech Trends and Technology (IJBTT), V6(1): 1-12 Jan - Mar 2016, Published by Seventh Sense Research Group.
Abstract
As the world is becoming more advanced in the field of technology and mankind is backing intensively on various resources like petroleum, metal mines and non-renewable carbon sources, thus the environment is getting devastated by the excessive generation of toxic compounds, either as waste products or by-products. Quite a large number of microbes have the ability to transform these toxic pollutants into easily degradable reduced forms. This review basically aims at tabulating principal characteristics of various microorganisms which possess affinity towards toxic substances based on a number of biotic and abiotic factors like pH, temperature, functional groups, competition and moisture content. It classifies aerobic and anaerobic microbes on the basis of their role in biodegradation of organic, inorganic or radioactive pollutants and summarises different microbes used for reducing major soil, water and petroleum pollutants. Thereafter, it focusses on the bioreactors used majorly for in-situ and ex-situ bioremediation. It finally gives an idea of the prime factors which govern the rate of degradation, knowledge of different metabolic and enzymatic pathways which together can further be used to genetically engineer new strains to effectively reduce various other recalcitrants for a sustainable future.
References
1. Van de Wiele, T., et al., Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect, 2005. 113(1): p. 6-10.
2. Munnecke, D.M., Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method.Appl Environ Microbiol, 1976. 32(1): p. 7-13.
3. Stevens, T.O., R.L. Crawford, and D.L. Crawford, Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol).Biodegradation, 1991.2(1): p. 1-13.
4. Hanne, L.F., et al., Degradation and induction specificity in actinomycetes that degrade p-nitrophenol.Appl Environ Microbiol, 1993. 59(10): p. 3505-8.
5. Diaz, E., Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility.IntMicrobiol, 2004. 7(3): p. 173-80.
6. Fulthorpe, R.R., A.N. Rhodes, and J.M. Tiedje, Pristine soils mineralize 3-chlorobenzoate and 2,4- dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol, 1996. 62(4): p. 1159-66.
7. Das, N. and P. Chandran, Microbial degradation of petroleum hydrocarbon contaminants: an overview.Biotechnol Res Int, 2011.2011: p. 941810.
8. Freitas dos Santos, L.M., D.J. Leak, and A.G. Livingston, Enrichment of mixed cultures capable of aerobic degradation of 1,2-dibromoethane.Appl Environ Microbiol, 1996. 62(12): p. 4675-7.
9. Monserrate, E. and M.M. Haggblom, Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl Environ Microbiol, 1997. 63(10): p. 3911-5.
10. Deni, J. and M.J. Penninckx, Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil.Appl Environ Microbiol, 1999. 65(9): p. 4008-13.
11. Garcia-Arellano, H., M. Alcalde, and A. Ballesteros, Use and improvement of microbial redox enzymes for environmental purposes.Microb Cell Fact, 2004.3(1): p. 10.
12. Hunter, R.D., et al., Bacillus subtilis is a potential degrader of pyrene and benzo[a]pyrene.Int J Environ Res Public Health, 2005. 2(2): p. 267-71.
13. Mariano, A.P., et al., Biodegradability of commercial and weathered diesel oils.Braz J Microbiol, 2008. 39(1): p. 133-42.
14. Kim, H.J., W. Du, and R.F. Ismagilov, Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(ii).IntegrBiol (Camb), 2011. 3(2): p. 126- 33.
15. Tas, N., et al., Role of "Dehalococcoides" spp. in the anaerobic transformation of hexachlorobenzene in European rivers.Appl Environ Microbiol, 2011. 77(13): p. 4437-45.
16. Rhee, Y.J., S. Hillier, and G.M. Gadd, Lead transformation to pyromorphite by fungi.CurrBiol, 2012. 22(3): p. 237-41.
17. Samin, G. and D.B. Janssen, Transformation and biodegradation of 1,2,3-trichloropropane (TCP). Environ SciPollut Res Int, 2012. 19(8): p. 3067-78.
18. Yang, Y., et al., Microbial electricity generation enhances decabromodiphenyl ether (BDE-209) degradation.PLoS One, 2013.8(8): p. e70686.
19. Kamika, I., et al., The impact of microbial ecology and chemical profile on the enhanced biological phosphorus removal (EBPR) process: a case study of Northern Wastewater Treatment Works, Johannesburg.Int J Environ Res Public Health, 2014. 11(3): p. 2876-98.
20. Braun, K. and D.T. Gibson, Anaerobic degradation of 2- aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol, 1984. 48(1): p. 102-7.
21. Lewis, D.L., R.E. Hodson, and L.F. Freeman, 3rd, Effects of microbial community interactions on transformation rates of xenobiotic chemicals.Appl Environ Microbiol, 1984. 48(3): p. 561-5.
22. Peakall, D.B., Phthalate esters: Occurrence and biological effects. Residue Rev, 1975. 54: p. 1-41.
23. Graham, P.R., Phthalate ester plasticizers--why and how they are used. Environ Health Perspect, 1973. 3: p. 3-12.
24. Taylor, B.F. and J.A. Amador, Metabolism of pyridine compounds by phthalate-degrading bacteria.Appl Environ Microbiol, 1988. 54(10): p. 2342-4.
25. Davis, J.W. and C.L. Carpenter, Aerobic biodegradation of vinyl chloride in groundwater samples.Appl Environ Microbiol, 1990. 56(12): p. 3878-80.
26. Fournier, D., et al., Biotransformation of Nnitrosodimethylamine by Pseudomonas mendocina KR1.Appl Environ Microbiol, 2006. 72(10): p. 6693-8.
27. Sun, G., Arsenic contamination and arsenicosis in China.ToxicolApplPharmacol, 2004. 198(3): p. 268-71.
28. Silver, S. and T. Phung le, A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind- MicrobiolBiotechnol, 2005. 32(11-12): p. 587-605.
29. Simeonova, D.D., et al., Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain.BiotechnolBioeng, 2005. 91(4): p. 441-6.
30. Lievremont, D., et al., Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite.Chemosphere, 2003.51(5): p. 419-28.
31. Bruneel, O., et al., Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France). J ApplMicrobiol, 2003. 95(3): p. 492-9.
32. Weeger, W., et al., Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals, 1999.12(2): p. 141-9.
33. Osborne, F.H. and H.L. Enrlich, Oxidation of arsenite by a soil isolate of Alcaligenes. J ApplBacteriol, 1976. 41(2): p. 295-305.
34. Cai, L., et al., Genes involved in arsenic transformation and resistance associated with different levels of arseniccontaminated soils.BMC Microbiol, 2009.9: p. 4.
35. Sitte, J., et al., Microbial links between sulfate reduction and metal retention in uranium- and heavy metalcontaminated soil.Appl Environ Microbiol, 2010. 76(10): p. 3143-52.
36. Marinucci, A.C. and R. Bartha, Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture.Appl Environ Microbiol, 1979. 38(5): p. 811-7.
37. Herbes, S.E., Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of a coal-coking wastewater discharge.Appl Environ Microbiol, 1981. 41(1): p. 20-8.
38. Lewis, D.L., H.P. Kollig, and R.E. Hodson, Nutrient limitation and adaptation of microbial populations to chemical transformations.Appl Environ Microbiol, 1986. 51(3): p. 598-603.
39. Van Eekert, M.H.A., et al., Degradation and Fate of Carbon Tetrachloride in UnadaptedMethanogenic Granular Sludge.Appl Environ Microbiol, 1998. 64(7): p. 2350-6.
40. Dhanjal, S. and S.S. Cameotra, Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil.Microb Cell Fact, 2010.9: p. 52.
41. Alum, O.U., Obula, L.E, Microbial Diversity: A Key Driver of Environmental Biotechnology.International Journal of Biotech Trends and Technology (IJBTT), 2015.V11(July-August): p. 31-37
42. S., N., Nano Technology in Environmental Application. International Journal of Biotech Trends and Technology (IJBTT), 2011. 1(1, Number 2): p. 48-57.
Keywords
Pollutants, Reduction, Aerobic, Anaerobi, Microbes, Transformation, Bioremediation, Bioreactors.