The Biochemical Interplay between MCP1 and ATR

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2015 by IJBTT Journal
Volume-12                         
Year of Publication : 2015
Authors : Elsa Bronze-da-Rocha, Chii-Mei Lin, Mirit I. Aladjem

Citation

Elsa Bronze-da-Rocha, Chii-Mei Lin, Mirit I. Aladjem "The Biochemical Interplay between MCP1 and ATR", International Journal of Biotech Trends and Technology (IJBTT),V12:1-6 September-October 2015. Published by Seventh Sense Research Group.

Abstract

The maintenance of genome integrity requires and is regulated by two PIKKs [PI3K (phosphoinositide 3- kinase)-related kinases], the ATM (ataxia-telangiectasia mutated) and the ATR (ATM- and Rad3-related). ATR is the major coordinator of the response to DNA damage agents that interfere with progression of the replication fork and inhibit DNA synthesis. Since our previous work showed that MCP1 was associated with the early replication stages of DNA replication, we questioned whether MCP1 was required for the ATR pathway. Biochemical and immunological approaches revealed an association of MCP1 with ATR in undamaged and damaged cells. In damaged cells, the ATR-MCP1 interaction was primarily exhibited by the 31kDa form of MCP1. In undamaged cells, both 31kDa and 33kDa MCP1 isoforms interacted with ATR. The immunoprecipitation and immunofluorescence assays suggest that MCP1 may be involved in ATR pathway, namely by its association with ATR, under physiological conditions and after DNA damage.

References

[1] L. Zou. “Single- and double-stranded DNA, building a trigger of ATR-mediated DNA damage response”. Genes Development, vol. 21, pp. 879-885, 2007.
[2] K. A. Cimprich, and D. Cortez. “ATR: an essential regulator of genome integrity”. Nature Reviews Molecular Cell Biology, vol. 9, pp.616-627, 2008.
[3] L. Zou, and S. J. Elledge. “Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes”. Science, vol. 300, 1542-1548, 2003.
[4] S. Yan, and W.M. Michael. “TopBP1 and DNA polymerasealpha directly recruit the 9-1-1 complex to stalled DNA replication forks”. Cell Biology, vol. 184, no. 6, pp.793-804, 2009.
[5] N. D. Lakin. “Recruitment of 9-1-1 to sites of DNA damage through cell cycle-dependent processing of DNA lesions”. Cell Cycle vol. 8, pp. 1981, 2009.
[6] J. H Choi, L. A. Lindsey-Boltz, M. Kemp, A. C. Mason, M. S. Wold, and Sancar A. “Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling”. Proceedings of the National Academy of Sciences USA, vol. 107, pp. 13660-13665, 2010.
[7] R. L. Flynn, and L. Zou. “ATR: a master conductor of cellular responses to DNA replication stress”. Trends in Biochemical Sciences, vol. 36, pp.133-140, 2011.
[8] D. A. Dart, K. E. Adams, I. Akerman, and N.D. Lakin. “Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase”. Journal of Biological Chemistry, vol. 279, pp.16422-16440, 2004.
[9] R. Jossen, and R. Bermejo R. “The DNA damage checkpoint response to replication stress: A Game of Forks”. Frontiers in Genetics, vol. 4, pp.1-14, 2013.
[10] D. Shechter, V. Constanzo, and J. Gautier. “ATR and ATM regulate the timing of DNA origin firing”. Nature Cell Biology, vol. 6, pp. 648-655, 2004a.
[11] E. J. Brown, and D. Baltimore. “ATR disruption leads to chromosomal fragmentation and early embryonic lethality”. Genes Development, vol. 14, pp. 397-402, 2000.
[12] C. Cotta-Ramusino, E. R. 3rd McDonald, K. Hurov, M. E. Sowa, J. W. Harper, and S. J., Elledge. “A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling”. Science, vol. 332, pp. 1313-1317, 2011.
[13] S. Matsuoka, B. A. Ballif, A. Smogorzewska, E. R. 3rd McDonald, K. E. Hurov, J. Luo, C. E. Bakalarski, Z. Zhao, N. Solimini, Y. Lerenthal, Y. Shiloh, S. P. Gygi, and S. J. Elledge. “ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage”. Science, vol. 316, pp. 1160-1166, 2007.
[14] B. Shiotani, and L. Zou. “ATR signaling at a glance”. Journal of Cell Science, vol. 122, pp. 301-304, 2009.
[15] M. P. Stokes, J. Rush, J. Macneill, J. M. Ren, K. Sprott, J. Nardone, V. Yang, S. A. Beausoleil, S. P. Gygi, M. Livingstone, H. Zhang, R. D. Polakiewicz, and M. J. Comb. “Profiling of UV-induced ATM/ATR signaling pathways”. Proceedings of the National Academy of Sciences USA, vol. 104, pp.19855-19860, 2007.
[16] E. Bronze-da-Rocha, C. M. Lin, T. Shimura, and M. I Aladjem. “Interactions of MCP1 with components of the replication machinery in mammalian cells”. International Journal of Biological Sciences, vol. 7, pp. 193-208, 2011.
[17] E. Bronze-da-Rocha, A. Nóvoa, C. Cunha, M. Carmo- Fonseca, N. A. Staines, and C. E. Sunkel. “The human autoantigen MCP1 is required during early stages of DNA replication”. Chromosome Research, vol. 8, pp. 669-711, 2000.
[18] R. L. Bernat, G. G. Borisy, N. F. Rothfield, and W. C. Earnshaw. “Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis”, Journal of Cell Biology, vol. 111, pp. 1519-1533, 1990.
[19] E. Bronze-da-Rocha, J. A. Catita, and C. E. Sunkel. “Molecular cloning of Metaphase Chromosome Protein 1 (MCP1), a novel human autoantigen that associates with condensed chromosomes during mitosis”. Chromosome Research, vol. 6, pp. 85-95, 1998.
[20] J. Méndez and B. Stillman. “Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes at late mitosis”. Molecular and Cellular Biology, vol. 20, pp. 8602-8612, 2000.
[21] D. A. Jackson. “S-phase progression in synchronized human cells”. Experimental Cell Research, vol. 220, pp. 62-70, 1995.
[22] D. S. Dimitrova, I. T. Todorov, T. Melendy, and D. M. Gilbert. “Mcm2, but not RPA. is a component of the mammalian early G1-phase prereplication complex”. Journal of Cell Biology, vol. 146, pp.709-722, 1999.
[23] S. Ikegami, T. Taguchi, M. Ohashi, M. Oguro, H. Nagano, and Y. Mano. “Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha”. Nature, vol. 275, pp. 458-460, 1978.
[24] T. Furuta, H. Takemura, Z. Y. Liao, G. J. Aune, C. Redon, O. A. Sedelnikova, D. R. Pilch, E. P. Rogakou, A. Celeste, H. T. Chen, A. ,Nussenzweig M. I. Aladjem, W. M. Bonner, and Y. Pommier Y. “Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes”. Journal of Biological Chemistry, vol. 278, pp. 20303-20312, 2003.
[25] H. Wang, X. Wang, X. Y. Zhou, D. J. Chen, G. C. Li, G. Iliakis, and Y. Wang. “Ku affects the Ataxia and Rad 3- related/Chk1-dependent S-phase checkpoint response after camptothecin treatment”. Cancer Research, vol. 62, pp. 2483-2487, 2002.
[26] X. Wang, J. Guan, B. Hu, R. S. Weiss, G. Iliakis, and Y. Wang. “Involvement of Hus1 in the chain elongation step of DNA replication after exposure to camptothecin or ionizing radiation”. Nucleic Acids Research, vol. 32, pp. 767-775, 2004.
[27] C. J. Bostock, D. M. Prescott, and J. B. Kirpatrick. “An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border”. Experimental Cell Research, vol. 68, pp. 163-168, 1971.
[28] W. A. Cliby, C. J. Roberts, K. A. Cimpric, C. M. Stringer, J. R. Lamb, S. L. Schreiber, and S. H. Friend. “Overexpression of a kinase-inactive ATR protein causes sensitivity to DNAdamaging agents and defects in cell cycle checkpoints”. EMBO Journal, vol. 17, pp. 159-169, 1998.
[29] D. Shechter, V. Costanzo, and J. Gautier. “Regulation of DNA replication by ATR: signaling in response to DNA intermediates”. DNA Repair, vol. 3, no. 8-9, pp. 901-908, 2004b.
[30] E. Bronze-da-Rocha, T. Shimura, C. E. Sunkel, and M. I. Aladjem. “Identification of the relationship between Metaphase Chromosome Protein 1 (MCP1) and the pre- Replication Complex (pre-RC)”. Molecular Biology of the Cell, vol. 15, no. S:L(86), 2004.
[31] D. Wu, B. Chen , K. Parihar, L. He, C. Fan, J. Zhang, L. Liu et al. “ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function”. Oncogene, vol. 25pp. 1153-1164, 2006.
[32] F. Wei, Y. Xie, L. He, L. Tao, and D. Tang. “ERK1 and ERK2 kinases activate hydroxyurea-induced S-phase checkpoint in MCF7 cells by mediating ATR activation”. Cell Signal, vol. 23, pp. 259-268, 2011.
[33] W. A. Cliby, K. A. Lewis, K. K. Lilly, and S.H. Kaufmann, ”S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function”. Journal of Biological Chemistry, vol. 277, pp. 1599-1606, 2002.
[34] R. T. Abraham. “Cell cycle checkpoint signaling through the ATM and ATR kinases”. Genes Development, vol. 15, pp. 2177-2196, 2001.
[35] C. C. Tsao, C. Geisen, and R. T Abraham. “Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling”. EMBO Journa,l vol. 23, pp. 4660-4669, 2004.
[36] E. Ohashi, Y. Takeishi, S. Ueda, and T. Tsurimoto. “Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage”. DNA Repair (Amst), vol. 21, pp. 1-11, 2014.
[37] S. Pathania, J. Nguyen, S. J. Hill, R. Scully, G. O. Adelmant, J. A. Marto, J. Feunteun, and D. M. Livingston. “BRCA1 is required for postreplication repair after UV-induced DNA damage”. Molecular Cell, vol. 44, pp. 235-251, 2011.
[38] Y Zang, and T Hunter. “Roles of Chk1 in cell biology and cancer therapy”. International Journal of Cancer, vol. 134, no. 5, pp. 1013-1023, 2014.
[39] D. O. Warmerdam, R. Kanaar, and V. A. Smits. “Differential Dynamics of ATR-Mediated Checkpoint Regulators”. Journal of Nucleic Acids, vol. 2010, Article ID 319142, 2010
[40] A. Ray, K. Milum, A. Battu, G.nWani, and A. A. Wani. “NER initiation factors, DDB2 and XPC, regulate UV radiation response by recruiting ATR and ATM kinases to DNA damage sites”. DNA Repair (Amst), vol. 12, pp. 273- 283, 2013.
[41] H. Zhao, and H. Piwnica-Worms, “ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1”. Molecular and Cellular Biology, vol. 21, no. 13, pp. 4129-4139, 2001.
[42] M. G. Vrouwe, A. Pines, R. M. Overmeer, K.Hanada, and L. H. Mullenders. “UV-induced photolesions elicit ATRkinase- dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways”. Journal of Cell Science, vol. 124, pp. 435-446, 2011.
[43] K. Marheineke, and O. Hyrien. “Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint.” Journal of Biological Chemistry, vol. 279, pp. 28071-28081, 2004.
[44] J. A. Tercero, M. P. Longhese, and J. F. Diffley. “A central role for DNA replication forks in checkpoint activation and response”. Molecular Cell, vol. 11, pp. 1323-1336, 2003.
[45] I. M. Ward, K. Minn, and J. Chen. “UV-induced ataxiatelangiectasia- mutated and Rad3-related (ATR) activation requires replication stress”. Journal of Biological Chemistry, vol. 279, pp. 9677-9680, 2004.
[46] E. A. Nam, and D. Cortez, “ATR signaling: more than meeting at the fork, Biochemical Journal, vol 436, no. 3, pp. 527-536, 2011.
[47] L. Zhang, H. Chen, M. Gong, and F. Gong. 2013. “The chromatin remodeling protein BRG1 modulates BRCA1 response to UV irradiation by regulating ATR/ATM activation”. Frontiers in Oncology, vol. 3, pp. 7, 2013.

Keywords
ATR, MCP1, DNA damage, cell cycle.