International Journal of Biotech Trends and Technology (IJBTT)
© 2021 by IJBTT Journal
Volume - 11 Issue - 4                          
Year of Publication : 2021
Authors : Uzma Qaisar
DOI :  10.14445/22490183/IJBTT-V11I4P601


MLA Style:Uzma Qaisar "Chloramphenicol Resistance in Pseudomonas Aeruginosa" International Journal of Biotech Trends and Technology 11.4 (2021): 1-6.

APA Style:Uzma Qaisar(2021). Chloramphenicol Resistance in Pseudomonas Aeruginosa. International Journal of Biotech Trends and Technology, 11(4), 1-6.


Pseudomonas aeruginosa is an opportunist bacterium that is pathogenic for immunocompromised humans. It is very difficult to control the infections caused by this organism due to the formation of antibiotic-resistant biofilms. Multidrug-resistant strains often arise due to the presence of transferable parts in the genome of P. aeruginosa. Genomic changes and other factors affect the efflux pump systems, which function for the exclusion of toxic substances from the bacterial cells and confer antibiotic resistance. Out of many efflux pumps present in this bacterium, MexEF-OprN is responsible for conferring chloramphenicol resistance to P. aeruginosa. In this review article, the role of different factors, regulators, and signals which affect chloramphenicol resistance in P. aeruginosa are discussed.


[1] Salyers, A. A., and Whitt, D. D.(ed.). Bacterial pathogenesis: a molecular approach, 2nd ed., (2002) 53-100. ASM Press, Washington, D.C.
[2] Kropinski, A., Lewis, V. and Berry, D. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. Journal of Bacteriology, 169 (1987)1960-1966.
[3] Subedi, D., Vijay, A.K., Kohli, G.S., et al. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 8, 15668 (2018).
[4] Holloway, B. Genetic recombination in Pseudomonas aeruginosa. Microbiology, 13 (1955) 572-581.
[5] Stover, C., Pham, X., Erwin, A., Mizoguchi, S., Warrener, P., Hickey, M., Brinkman, F., Hufnagle, W., Kowalik, D. and Lagrou, M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406 (2000) 959.
[6] Klockgether, J., Munder, A., Neugebauer, J., Davenport, C. F., Stanke, F., Larbig, K. D., Heeb, S., Schöck, U., Pohl, T. M. and Wiehlmann, L. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. Journal of bacteriology, 192 (2010) 1113-1121.
[7] Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., and Levy, R. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 100 (2003)14339-14344.
[8] Greenberg, E. P. 2000. Bacterial genomics: pump up the versatility. Nature, 406:947.
[9] Mims, C. A., Nash, A., and Stephen, J. Mims' pathogenesis of the infectious disease. Gulf Professional Publishing. (2001).
[10] Livermore, D. M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clinical infectious diseases, 34 (2002) 634-640.
[11] Aloush, V., Navon-Venezia, S., Seigman-Igra, Y., Cabili, S. and Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrobial Agents and Chemotherapy, 50 (2006) 43-48.
[12] Silver, D. R., Cohen, I. L. and Weinberg, P. F. 1992. Recurrent Pseudomonas aeruginosa pneumonia in an intensive care unit. Chest, 101:194-198.
[13] Garau, J. and Gomez, L. 2003. Pseudomonas aeruginosa pneumonia. Current Opinion in Infectious Diseases, 16:135-143.
[14] Oliver, A., Cantón, R., Campo, P., Baquero, F. and Blázquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science, 288 (2000) 1251-1253.
[15] Steuhl, K., Döring, G., Henni, A., Thiel, H. and Botzenhart, K. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Investigative Ophthalmology and Visual Science, 28 (1987) 1559-1568.
[16] Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. and Hamood, A. N. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infection and Immunity, 67 (1999) 5854-5862.
[17] Poschet, J., Boucher, J., Tatterson, L., Skidmore, J., Van Dyke, R., and Deretic, V. Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proceedings of the National Academy of Sciences, 98 (2001) 13972-13977.
[18] Tatterson, L., Poschet, J., Firoved, A., Skidmore, J., and Deretic, V. CFTR and pseudomonas infections in cystic fibrosis. Front. Biosci, 6(2001) D890-D897.
[19] Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. and Weiss, T. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. The Journal of clinical investigation, 109 (2002) 317-325.
[20] Lyczak, J. B., Cannon, C. L. and Pier, G. B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1. Microbes and Infection, 2 (2000)1051-1060.
[21] Kreger, A. S. 1983. Pathogenesis of Pseudomonas aeruginosa ocular diseases. Reviews of Infectious Diseases, 5:S931-S935.
[22] Greenfield, E. and McManus, A. T. Infectious complications: prevention and strategies for their control. The Nursing clinics of North America, 32(1997) 297-309.
[23] Valadbeigi, H., Sadeghifard, N., RAFIEI, T. R. and Maleki, A. A Study on The Frequency of Toxin A, Alginate Genes, and of clinical Pseudomonas aeroginosa strains.(2012)
[24] Hwang, J., Fitzgerald, D. J., Adhya, S., and Pastan, I. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell, 48(1987) 129-136.
[25] Wick, M. J., Frank, D., Storey, D. and Iglewski, B. Structure, function, and regulation of Pseudomonas aeruginosa exotoxin A. Annual Reviews in Microbiology, 44 (1990) 335-363.
[26] Pedersen, S., Høiby, N., Espersen, F. and Koch, C. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax, 47(1992) 6-13.
[27] Leid, J. G., Willson, C. J., Shirtliff, M. E., Hassett, D. J., Parsek, M. R. and Jeffers, A. K. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. The Journal of Immunology, 175 (2005) 7512-7518.
[28] Casadevall, A. and Pirofski, L.-a. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infection and Immunity, 67 (1999) 3703-3713.
[29] Isenberg, H. D. Pathogenicity and virulence: another view. Clinical Microbiology Reviews, 1 (1988) 40-53.
[30] Iglewski, B. H. and Kabat, D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proceedings of the National Academy of Sciences, 72(1975) 2284-2288.
[31] Iglewski, B. H., Liu, P. V. and Kabat, D. Mechanism of action of Pseudomonas aeruginosa exotoxin Aiadenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infection and Immunity, 15 (1977) 138-144.
[32] Jenkins, C. E., Swiatoniowski, A., Issekutz, A. C. and Lin, T.-J. Pseudomonas aeruginosa exotoxin A induces human mast cell apoptosis by a caspase-8 and-3-dependent mechanism. Journal of Biological Chemistry, 279 (2004) 37201-37207.
[33] Webber, M. A. and Piddock L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy. 51(1) (2003) 9–11.
[34] Aeschlimann, J. R. The Role of Multidrug Efflux Pumps in the Antibiotic Resistance of Pseudomonas aeruginosa and Other Gram-Negative Bacteria: Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 23 (2003) 916-924.
[35] Wang, D., Seeve, C., Pierson, L. S. and Pierson, E. A. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. Bmc Genomics, 14 (2013) 618.
[36] Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H. and Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 44 (2000) 3322-3327.
[37] Ko¨ hler, T., Michéa‐ Hamzehpour, M., Henze, U., Gotoh, N., Kocjancic Curty, L. and Pechère, J. C. Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Molecular Microbiology, 23(1997) 345-354.
[38] Köhler, T., Epp, S. F., Curty, L. K. and Pechère, J.-C. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. Journal of bacteriology, 181(1999) 6300-6305.
[39] Juhas, M., Wiehlmann, L., Huber, B., Jordan, D., Lauber, J., Salunkhe, P., Limpert, A. S., von Götz, F., Steinmetz, I. and Eberl, L. Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology, 150 (2004) 831-841.
[40] Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. and Williams, P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐ dependency of the quorum-sensing hierarchy, regulates rhl‐ dependent genes at the onset of stationary phase, and can be produced in the absence of LasR. Molecular Microbiology, 50 (2003) 29-43.
[41] Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., Chang, C., Dong, Y., Williams, P., and Zhang, L.-H. A cell-cell communication signal integrates quorum sensing and stress response. Nature Chemical Biology, 9 (2013) 339.
[42] Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. and Bycroft, B. W. Multiple N-acyl-L-homoserine lactone signal molecules regulate the production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 92 (1995) 9427-9431.
[43] Schuster, M. and Greenberg, E. P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. International Journal of Medical Microbiology, 296(2006) 73-81.
[44] Nouwens, A. S., Beatson, S. A., Whitchurch, C. B., Walsh, B. J., Schweizer, H. P., Mattick, J. S. and Cordwell, S. J. Proteome analysis of extracellular proteins regulated by the las and rhl quorum-sensing systems in Pseudomonas aeruginosa PAO1. Microbiology, 149(2003) 1311-1322.
[45] de Kievit, T. R., Kakai, Y., Register, J. K., Pesci, E. C. and Iglewski, B. H. Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiology Letters, 212(2002) 101-106.
[46] Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(1998) 295-298.
[47] Rashid, M. H., Rumbaugh, K., Passador, L., Davies, D. G., Hamood, A. N., Iglewski, B. H. and Kornberg, A. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 97(2000) 9636-9641.
[48] Pesci, E. C., Milbank, J. B., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P. and Iglewski, B. H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 96(1999) 11229-11234.
[49] Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. and Williams, P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐ dependency of the quorum-sensing hierarchy, regulates rhl‐ dependent genes at the onset of stationary phase, and can be produced in the absence of LasR. Molecular Microbiology, 50(2003) 29-43.
[50] Häussler, S. and Becker, T. 2008. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathogens, 4:e1000166.
[51] Wade, D. S., Calfee, M. W., Rocha, E. R., Ling, E. A., Engstrom, E., Coleman, J. P. and Pesci, E. C. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 187(2005) 4372-4380.
[52] Dusane, D. H., Zinjarde, S. S., Venugopalan, V. P., Mclean, R. J., Weber, M. M. and Rahman, P.K. Quorum sensing:implications on rhamnolipid biosurfactant production. Biotechnology and Genetic Engineering Reviews, 27(2010) 159-184.
[53] Duan, K. and Surette, M. G. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. Journal of Bacteriology, 189 (2007) 4827-4836.
[54] Qaisar, U., Luo, L., Haley, C. L., Brady, S. F., Carty, N. L., Colmer-Hamood, J. A. and Hamood, A. N. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. PLoS One, 8:e62735. (2013)
[55] Ravel, J. and Cornelis, P. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends in Microbiology, 11:195-200.
[56] Stintzi, A., Cornelis, P., Hohnadel, D., Meyer, J.-M., Dean, C., Poole, K., Kourambas, S., and Krishnapillai, V. 1996. Novel pyoverdine biosynthesis gene (s) of Pseudomonas aeruginosa PAO. Microbiology, 142 (2003)1181-1190.
[57] Clarke-Pearson, M. F. and Brady, S. F. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. Journal of bacteriology, 190(2008) 6927-6930.
[58] Brady, S. F. and Clardy, J. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angewandte Chemie, 117(2005) 7225-7227.
[59] Drake, E. J. and Gulick, A. M. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6, 7-dihydroxy coumarin. Journal of Molecular Biology, 384(2008) 193-205.
[60] Asif, A., Iftikhar, A., Hamood, A., Colmer-Hamood, J. A., & Qaisar, U. Isonitrile-functionalized tyrosine modulates swarming motility and quorum sensing in Pseudomonas aeruginosa. Microbial Pathogenesis, 127 (2019) 288-295.
[61] Qaisar, U., Kruczek, C. J., Azeem, M., Javaid, N., Colmer-Hamood, J. A. and Hamood, A. N. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles. Journal of Microbiology, 54(2016) 573-581.
[62] Iftikhar, A., Asif, A., Manzoor, A., Azeem, M., Sarwar, G., Rashid, N., & Qaisar, U. Mutation in pvcABCD operon of Pseudomonas aeruginosa modulates the MexEF-OprN efflux system and hence resistance to chloramphenicol and ciprofloxacin. Microbial Pathogenesis, 149 (2020) 104491.

Pseudomonas aeruginosa, chloramphenicol, antibiotic resistance, efflux pump