Biotechnological Intervention In The Biosynthesis of Carotenoids

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2021 by IJBTT Journal
Volume - 11 Issue - 3                          
Year of Publication : 2021
Authors : Muhammad Azeem, Tanzeela Rehman, Muhammad Faiq, Uzma Qaisar
DOI :  10.14445/22490183/IJBTT-V11I3P606

Citation

MLA Style:Muhammad Azeem, Tanzeela Rehman, Muhammad Faiq, Uzma Qaisar  "Biotechnological Intervention In The Biosynthesis of Carotenoids" International Journal of Biotech Trends and Technology 11.3 (2021): 42-50.

APA Style:Muhammad Azeem, Tanzeela Rehman, Muhammad Faiq, Uzma Qaisar(2021). Biotechnological Intervention In The Biosynthesis of CarotenoidsInternational Journal of Biotech Trends and Technology, 11(3), 42-50.

Abstract

Carotenoids are a group of naturally occurring pigments found in fruits and other plant parts. Due to their color and nutritional value, they have many industrial applications and are generally synthesized by micro-organisms. Here in this review, we discussed the history, sources, biosynthetic pathways in various microorganisms, and biotechnology interventions in the production of these industrially important molecules. Carotenoids are synthesized in the chloroplast by the action of a series of nuclear-encoded membrane proteins. These gene products are synthesized in the cytoplasm with precursor polypeptides containing amino-terminal extensions that lead them to the chloroplasts. The biosynthesis of carotenoids has been exhaustively reviewed in this article. This review will accentuate various biotechnological approaches adopted to increase carotenoid accumulation in plants.

References

[1] Khachik F, Spangler CJ, Smith JC, Canfield LM, Steck A, Pfander H., Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem; 69 (1997) 1873–1881.
[2] Tapiero H, Townsend DM, Tew KD., The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother; 58 (2004) 100–110.
[3] Goodwin TW, Birkhäuser Verlag, Basel, Stuttgart., Biosynthesis. In O Isler, (Ed) Carotenoids; (1971) 577-636.
[4] Goodwin TW., The biochemistry of the carotenoids. 1 Chapman and Hall London; (1980) 377.
[5] Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 1 (2016). Retrieved 17 April 2019.
[6] Berman J, Zorrilla-López U, Farré G, Zhu C, Sandmann G, Twyman RM, Capell T, Christou P., Nutritionally important carotenoids as consumer products. Phytochem Rev; 14 (2015) 727-743.
[7] Henríquez V, Escobar C, Galarza J, Gimpel J., Carotenoids in microalgae. In Carotenoids in Nature. Springer International Publishing; (2016) 219-237.
[8] Stafsnes MH, Josefsen KD, Andersen GK, Valla S, Ellingsen TE, Bruheim P., Isolation and characterization of marine pigmented bacteria from norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J. Microbiol; 48(1) (2010) 16-23.
[9] Johnson EA, Schroeder WA., Microbial carotenoids. Adv Biochem Eng Biotechnol; 53 (1995a) 119-178.
[10] Christaki E, Giannenas I, Paneri PF, Bonos E., Functional properties of carotenoids originating from algae. J Sci Food Agric; 93 (2013) 5-11
[11] Amorim-Carrilho KT, Cepeda A, Fente C, Regal P., Review of methods for analysis of carotenoids. Trends Anal Chem; 56 (2014) 49-73.
[12] Mata-Goméz LC, Montañes JC, Méndez-Zavala A, Aguilar CL., Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact; 13 (2014) 1-11.
[13] https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Carotene
[14] Oliveira CG., Extração e caracterização do betacaroteno produzido por Rhodotorula glutinis tendo como substrato tendo o suco de caju. Universidade Federal do Ceará. Fortaleza; (2010).
[15] Valduga E, Tatsch PO, Tiggemann L, Treichel H, Toniazzo G, Zeni J, Di luccio M., Produção de carotenoides: micro-organismos como fonte de pigmentos naturais. Quimica Nova; 32 (9) (2009) 2429-2436.
[16] Zhang L, Selão TT, Selstam E, Norling B., Subcellular Localization of Carotenoid Biosynthesis in Synechocystis sp. PCC 6803. PLoS ONE 10(6) (2015) e0130904.
[17] Rodr?guez-Concepción M, Boronat A., Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics Plant Physiology; 130 (3) (2002) 1079-1089 .
[18] Rohmer M, Knani M, Simonin P, Sutter B, Sahm H., Isoprenoid biosynthesis in bacteria A novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal; 295 (2) (1993) 517-524.
[19] Fasano E, Serini S, Mondella N, Trombino S, Celleno L, Lanza P, Cittadini A, Calviello G., Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines. BioMed Research International; (2014) 1-11.
[20] Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA., Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science & Technology; 16 (9) (2005) 389-406.
[21] Virtamo J, Taylor PR, Kontto J, Männistö S, Utriainen M, Weinstein SJ, Albanes D., Effects of ?-tocopherol and ?-carotene supplementation on cancer incidence and mortality: 18-Year postintervention follow-up of the Alpha-Tocopherol. Beta-Carotene Cancer Prevention Study International Journal of Cancer; 135 (1) (2014) 178-185.
[22] Zhang J, Sun Z, Sun P, Chen T, Chen T., Microalgal carotenoids: Beneficial effects and potential in human health. Food & Function; 5(3) (2014) 413-425.
[23] Viuda-Martos M, Sanchez-Zapata E, Sayas-Barberá E, Sendra E, Pérez-Álvarez J, Fernández-LópezTomato J, and tomato byproducts., Human health benefits of lycopene and its application to meat products. A review Critical Reviews in Food Science and Nutrition; 54(8) (2014) 1032-1049.
[24] Disch A, Rohmer M., On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol; 168 (1998) 201-208.
[25] Hirai N, Yoshida R, Todoroki Y, Ohigashi H., Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem; 64 (2000) 1448-1458.
[26] Wanke M, Skorupinska K, Sweizewska E., Isoprenoid biosynthesis via 1-deoxy- D –xylulose 5-phosphate/2C-methyl- D -erithritol 4- phosphate (DOXP/MEP) pathway. Acta Biochim Pol; 48 (2001) 663–672.
[27] Umeno DM, Tobias A, Arnold FH. Diversifying carotenoid biosynthesis pathways by direct evolution. Microbiol Mol Biol Rev; 69 (2005) 51–78.
[28] Fraser PD, Bramley PM., The biosynthesis and nutritional uses of Carotenoids. Lipid Res; 43 (2004) 228-265.
[29] Hu Z, Zhang X, Wu Z, Qi H, Wang Z., Export of intracellular Monascus pigments by two-stage microbial fermentation in nonionic surfactant micelle aqueous solution. Biotechnol; 162(2-3) (2012) 202-9.
[30] Michelon M, Matos de Borba T, Ruan de Silva R, Veiga Burkert CA, de Medeiros Burkert JF., Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Sci Biotech; 21 (2012) 1–8.
[31] Becerra M, Belmonte ER, Cerdán ME, Siso MIG., Extraction of intra cell proteins from Kluyveromyces lactis. Food Technol Biotech; 39 (2007) 135–139.
[32] Buxadó JA, Heynngnezz LE, Juiz AG, Tamayo G, Lima IR, Marshalleck HD, Mola EL., Scale-up of processes to isolate the misstargeted rBm86 protein from Pichia pastoris. Afr J Biotech; 11 (2004) 599–605.
[33] Mustafa A, Trevino LM, Turner C., Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules; 17 (2012) 1809-1818.
[34] Nolan JM, Meagher K, Kashani S, Beatty S., What is meso-zeaxanthin and where does it come from? Eye; 27 (2013) 899-905.
[35] Young A J., Factors that affect the carotenoid composition of higher plants and algae. In Carotenoids in photosynthesis (ed. A. J. Young & G. Britton); London: Chapman & Hall (1993a) 161-205.
[36] Young A J., Occurrence and distribution of carotenoids in photosynthetic systems. In Carotenoids in photosynthesis (ed. A. J. Young & G. Britton); London: Chapman & Hall (1993b) 16-71.
[37] Cunningham FJ, Gantt E., Genes and enzymes of carotenoid biosynthesis in plants. A. Rev Plant Physiol Plant Mol Biol; 49 (1998) 557-583.
[38] Estevez JM, Cantero A, Reindl A, Reichler S, Leon P., 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem; 276 (2001) 22901-22909.
[39] Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley P., Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenods in tomato. Plant Biotechnol J; 3 (2005) 7-27.
[40] Fray RG, Wallace A, Fraser PD, Valero D, Peter H, Peter MB, Donald G., Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J; 8 (1995) 693-701.
[41] Fujisawa M, Watanabe M, Song-Kang C, Maki T, Kanji O, Norihiko M., Enrichment of Carotenoids in Flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci and Bioeng; 105 (2008) 636-641.
[42] Welsch R, Arango J, Bar C, Salazar B, Al-babili S, Beltran J, Chavarriaga, Cevallos H, Tohme J, Beyer P., Provitamin A accumulation in cassava roots (Manihot esculenta) driven by a single nucleotide polymorphism in phytoene synthase gene. The Plant Cell; 10 (2000) 3348-3356.
[43] Wan Q, Xhang X, Song M., Fruit-specific RNAi-mediated Restraining expression of Lcy Gene to enhance lycopene content in tomatoes. Chinese J Biotechnol; 23 (2007) 429-434.
[44] Qin G, Gu H, Ma L, Yiben P, Deng XW, Chen Z, Qu L., Distruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res; 17 (2007) 471-482.
[45] Pogson BJ, Rissler HM., Genetic manipulation of carotenoid biosynthesis and photoprotection. Phil Trans Res Soc of London; 355 (2000) 1395-1403.
[46] Rosati C, Aquilani R, Sridhar D, Patrizia P, Carla M, Tavazza R, Bovier F, Bilal C, Giuliano G., Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J; 24 (2000) 413-419.
[47] D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F., Virtually complete conversion of lycopene into ? – carotene in fruits of tomato plants transformed with the tomato lycopene ? – cyclase (tlcy - b) cDNA. Plant Sci; 166 (2004) 207-214.
[48] Diretto G, Ravazza R, Welsch R, Pixxichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G., Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol; 6 (2006) 1471-2229.
[49] Apel W, Bock R., Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol; 151 (2009) 59-66.
[50] Ravanello MP, Ke D, Julie A, Huang B, Shewmaker CK., Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng; 5 (2003) 255-263.
[51] Diretto G, Al-Babili S, Tavaza R, Papacchioli V, Beyer P, Giuliano G., Metabolic engineering of Potato carotenoid content through Tuber-specific overexpression of a bacterial mini pathway. PLoS ONE; 2 (2007) 350.
[52] Aluru M, Yang X, Rong G, Wang Z, Shanshan L, White W, Wang K, Rodermel S., Generation of transgenic maize with enhanced provitamin A content. J Exp Bot; 59 (2008) 3551.
[53] Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P., Transgenic multivitamin corn through bioforti-fication of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA; 106 (2009) 7762-7767.
[54] Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G., Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol; 7 (2007a) 11.
[55] Eck V, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR., Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J Potato Res; 84 (2007) 331-342.
[56] Stalberg K, Lindgren O, Ek B, Hoglund AS., Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant J; 36 (2003) 771-779.
[57] Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA., Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng; 8 (2006) 253-263.
[58] Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S., Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep; 26 (2007) 951-959.
[59] Jayaraj J, Devlin R, Punja Z., Metabolic engineering of novel keto-carotenoid production in carrot plants. Transgenic Res; 17 (2008) 489-501.
[60] Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G., Genetic engineering of zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epxi-dation. Metab Eng; 4 (2002) 263-272.

Keywords
Carotenoids, xanthophylls, tetra-terpenoids, lycopene