In silico Drug Designing and Phytochemicals prospect in Liver Cancer Therapeutics

International Journal of Biotech Trends and Technology (IJBTT)
© 2021 by IJBTT Journal
Volume - 11 Issue - 3                          
Year of Publication : 2021
Authors : Sneha Iyer, Reddy Om Sri Krishna, Vaishali Bisht, Apeksha Yadava
DOI :  10.14445/22490183/IJBTT-V11I3P605


MLA Style:Sneha Iyer, Reddy Om Sri Krishna, Vaishali Bisht, Apeksha Yadava  "In silico Drug Designing and Phytochemicals prospect in Liver Cancer Therapeutics" International Journal of Biotech Trends and Technology 11.3 (2021): 31-41.

APA Style:Sneha Iyer, Reddy Om Sri Krishna, Vaishali Bisht, Apeksha Yadava(2021). In silico Drug Designing and Phytochemicals prospect in Liver Cancer Therapeutics International Journal of Biotech Trends and Technology, 11(3), 31-41.


Cancer is a major public health problem worldwide. Affecting people of all ages, cancer cuts through society, causing suffering on a global scale. According to the World Health Organization, cancer is responsible for one in six deaths, making it the second most common cause of death globally. Hepatocellular carcinoma (HCC) is the most frequent cause of all liver cancers and constitutes 90% of liver cancers globally. The mortality in HCC is very high; about 7 Lakhs of death due to HCC occur annually and has been estimated to be 3rd common cause of death due to cancers affecting humans. The increasing knowledge of molecular and tumor biology has notably changed cancer treatment paradigms during the past 15 years. Current primary cancer management treatments include surgery, cytotoxic chemotherapy, targeted therapy, radiation therapy, endocrine therapy, and immunotherapy. Despite the endeavors and achievements made in treating cancers during the past decades, resistance to classical chemotherapeutic agents and/or novel targeted drugs continues to be a major problem in cancer therapies. The drug discovery process is very complex and includes an interdisciplinary effort for designing effective and commercially feasible drugs. In pharmaceutical, natural medicine, as well as in other scientific research, computers play a very important role, even in the development of new compounds in the quest for better therapeutic agents. A combination of rational drug design and structural biology leads to the discovery of novel therapeutic agents. For this purpose, the Computer-aided drug design (CADD) Center works with collaboration between structure biologists, biophysicists, and computational scientists for the discovery of new chemical entities. CADD and bioinformatics tools in the field of phytochemicals provide benefits like cost-saving, time to market, in-sight knowledge of drug-receptor interactions, speed up drug discovery and development.


[1] Anh Vu, L., Thi Cam Quyen, P., & Thuy Huong, N. (n.d.). In silico Drug Design: Prospective for Drug Lead Discovery. Retrieved from,(2021)
[2] Aparoy, P., Reddy, K. And Reddanna, P. 2012. Structure and Ligand Based Drug Design Strategies in the Development of Novel 5-LOX Inhibitors, Curr Med Chem. 19(22) (2012) 3763–3778.
[3] Behzad, S., Sureda, A., Barreca, D., Nabavi, S. F., Rastrelli, L., & Nabavi, S. M., Health effects of phloretin: from chemistry to medicine. Phytochemistry Reviews, 16(3) (2017) 527–533.
[4] Bhatia, N., Singh, B., & Koul, A., Lycopene treatment stalls the onset of experimentally induced hepatocellular carcinoma: a radioisotopic, physiological and biochemical analysis. Hepatoma Research, 4(3) (2018) 9.
[5] Bijak, M. 2017. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism, Molecules. 22(11) (2017) 81942.
[6] Bimonte, S., Albino, V., Piccirillo, M., Nasto, A., Molino, C., Palaia, R., & Cascella, M., Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. In Drug Design, Development and Therapy ., 13(2019) 611–621. Dove Medical Press Ltd.
[7] Blackadar, C. 2016. Historical review of the causes of cancer, World J Clin Oncol. 10 7(1) (2016) 54–86.
[8] Bohm, H.-J., & Schneider, G. (n.d.). Virtual Screening for Bioactive Molecules.
[9] Brady, G. P., & Stouten, P. F. W., Fast prediction and visualization of protein binding pockets with PASS. Journal of Computer-Aided Molecular Design, 14(4) (2000) 383–401.
[10] Christos E. Kazazis, C., Evangelopoulos, A., Kollas, A. and Vallianou, N., The Therapeutic Potential of Milk Thistle in Diabetes, Rev Diabet Stud. Summer; 11(2) (2014) 167–174.
[11] David, A., Arulmoli, R. and Parasuraman, SOverviews of Biological Importance of Quercetin: A Bioactive Flavonoid, Pharmacogn Rev.10(20) (2016) 84–89.
[12] Dong, X., Ni, B., Fu, J., Yin, X., You, L. Leng, X., Liang, X. and Ni, J., Emodin induces apoptosis in human hepatocellular carcinoma HepaRG cells via the mitochondrial caspase-dependent pathway, Oncol Rep. 40(4) (2018) 1985–1993.
[13] Farhan, M., Khan, H. Y., Oves, M., Al-Harrasi, A., Rehmani, N., Arif, H., Hadi, S. M., & Ahmad, A., Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins, 8(2) (2016).
[14] Fernández-Palanca, P., Fondevila, F., Méndez-Blanco, C., Tuñón, M., Javier González-Gallego, J. and Mauriz, J., Antitumor Effects of Quercetin in Hepatocarcinoma in Vitro and In Vivo Models: A Systematic Review, 11(12) (2019) 2875.
[15] Fini, L., Piazzi, G., Daoud, Y., Selgrad, M., Maegawa, S., Garcia, M., Fogliano, V., Romano, M., Graziani, G., Vitaglione, P., Carmack, S. W., Gasbarrini, A., Genta, R. M., Issa, J. P., Boland, C. R., & Ricciardiello, L., Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prevention Research, 4(6) (2011) 907–915.
[16] Gambini, J. Inglés, M. Olaso, G. Lopez-Grueso, R. Bonet-Costa, V. Gimeno-Mallench, L. Mas-Bargues, C. Abdelaziz, K. Gomez-Cabrera, M. Vina, J. and Borras, C., Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid Med Cell Longev. , (2015) 837042.
[17] Gupta, P., Bansal, M. P., & Koul, A., Evaluating the effect of lycopene from Lycopersicum esculentum on apoptosis during NDEA induced hepatocarcinogenesis. Biochemical and Biophysical Research Communications, 434(3) (2013) 479–485.
[18] Gururajanna, B., Al-Katib, A. A., Li, Y. W., Aranha, O., Vaitkevicius, V. K., & Sarkar, F. H., Molecular effects of taxol and caffeine on pancreatic cancer cells. International Journal of Molecular Medicine, 4(5) (1999) 501–507.
[19] Hamza, A., Wei, N. N., & Zhan, C. G., Ligand-based virtual screening approach using a new scoring function. Journal of Chemical Information and Modeling, 52(4) (2012) 963–974.
[20] He, P., Noda, Y., & Sugiyama, K., Suppressive effect of coffee on lipopolysaccharide-induced hepatitis in D-galactosamine-sensitized rats. Bioscience, Biotechnology and Biochemistry, 65(8) (2001) 1924–1927.
[21] Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H., The role of ligand efficiency metrics in drug discovery. Nature Reviews Drug Discovery, 13(2) (2014) 105–121.
[22] Hoshyar, R., & Mollaei, H., A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. Journal of Pharmacy and Pharmacology, 69(11) (2017) 1419–1427.
[23] Hsu, S., Chung, J., Anticancer potential of Emodin, Biomedicine (Taipei).2(3) (2012) 108–116.
[24] Imenshahidi, M., Hosseinzadeh, H. Berberine and barberry (Berberis vulgaris): A clinical review, Phytother Res. 33(3) 504-523.
[25] Ip, B. C., Hu, K. Q., Liu, C., Smith, D. E., Obin, M. S., Ausman, L. M., & Wang, X. D., Lycopene metabolite, apo-10?-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prevention Research, 6(12) (2013) 1304–1316.
[26] Jang, M. H., Shin, M. C., Kang, I. S., Baik, H. H., Cho, Y. H., Chu, J. P., Kim, E. H., & Kim, C. J. ., Caffeine induces apoptosis in human neuroblastoma cell line SK-N-MC. Journal of Korean Medical Science, 17(5) (2002) 674–678.
[27] Jhou, B. Y., Song, T. Y., Lee, I., Hu, M. L., & Yang, N. C., Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression. Journal of Agricultural and Food Chemistry, 65(32) (2017) 6893–6903.
[28] Kapetanovic, I., COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach,Chem Biol Interact. 171(2) (2008) 165–176.
[29] Kapetanovic, I. M., Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171(2) 165–176., (2008).
[30] Kastenholz, M. A., Pastor, M., Cruciani, G., Haaksma, E. E. J., & Fox, T. (2000). GRID/CPCA: A new computational tool to design selective ligands. Journal of Medicinal Chemistry, 43(16) (2000) 3033–3044.
[31] Khan, H., Jia, W., Yu, Z., Zaib, T., Feng, J., Jiang, Y., Song, H., Bai, Y., Yang, B., & Feng, H., Emodin succinyl ester inhibits malignant proliferation and migration of hepatocellular carcinoma by suppressing the interaction of AR and EZH2. Biomedicine and Pharmacotherapy, 128(2020) 110244.
[32] Ko, J., Sethi, G., Um, J., Shanmugam, M., Arfuso, F., Kumar, A., Bishayee, A. and Ahn, K., The Role of Resveratrol in Cancer Therapy,Int J Mol Sci.18(12) (2017) 2589.
[33] Laskowski, R. A., SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. Journal of Molecular Graphics, 13(5)(1995) 323–330.
[34] Levitt, D. G., & Banaszak, L. J., POCKET: A computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. Journal of Molecular Graphics, 10(4) (1992) 229–234.
[35] Li, Y. and Martin, II, R.Herbal Medicine and Hepatocellular Carcinoma: Applications and Challenges,Evid Based Complement Alternat Med. 541209.
[36] Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M., Wang, S., Liu, H., and Yin, Y., Quercetin, Inflammation and Immunity, Nutrients. 8(3) (2016) 167.
[37] Lin, S. T., Tu, S. H., Yang, P. S., Hsu, S. P., Lee, W. H., Ho, C. T., Wu, C. H., Lai, Y. H., Chen, M. Y., & Chen, L. C., Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling. Journal of Agricultural and Food Chemistry, 64(36) (2016) 6826–6837.
[38] Liu,C., Chen, K.and Chen, P., Treatment of Liver Cancer, Cold Spring Harb Perspect Med.5(9) (2015) a021535.
[39] Mein, J. R., Lian, F., & Wang, X. D. (2008). Biological activity of lycopene metabolites: Implications for cancer prevention. In Nutrition Reviews 66(12) (2008) 667–683. Nutr Rev.
[40] Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M., Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2) (2012) 146–157.
[41] Mezei, M. , A new method for mapping macromolecular topography. Journal of Molecular Graphics and Modelling, 21(5) (2003) 463–472.
[42] Mohanraj, K., Karthikeyan, B., Vivek-Ananth, R.,Bharath Chand, R., Aparna, S., Mangalapandi, P., and Samal, A. , IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics,Sci Rep. 8(2018) 4329.
[43] Mulakayala, C., Banaganapalli, B., Mulakayala, N., Pulaganti, M., C.m., A., & Chitta, S. K., Design and evaluation of new chemotherapeutics of aloe-emodin (AE) against the deadly cancer disease: An in silico study. Journal of Chemical Biology, 6(3) (2013) 141–153.
[44] Muriel, P., & Arauz, J., Coffee and liver diseases. In Fitoterapia ., 81(5) (2010) 297–305). Elsevier.
[45] Nath, L. R., Gorantla, J. N., Thulasidasan, A. K. T., Vijayakurup, V., Shah, S., Anwer, S., Joseph, S. M., Antony, J., Veena, K. S., Sundaram, S., Marelli, U. K., Lankalapalli, R. S., & Anto, R. J., Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Scientific Reports, 6(1) (2016) 36318.
[46] Nehlig, A., Daval, J. L., & Debry, G., Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. In Brain Research Reviews (Vol. 17(2) (1992) 139–170. Brain Res Brain Res Rev.
[47] Nishida, H., Omori, M., Fukutomi, Y., Ninomiya, M., Nishiwaki, S., Suganuma, M., Moriwaki, H., & Muto, Y., Inhibitory Effects of (—)?Epigallocatechin Gallate on Spontaneous Hepatoma in C3H/HeNCrj Mice and Human Hepatoma?derived PLC/PRF/5 Cells. Japanese Journal of Cancer Research, 85(3) (1994) 221–225.
[48] Noureini, S. K., & Wink, M., Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pacific Journal of Cancer Prevention, 13(5) (2012) 2305–2309.
[49] Ohishi, T., Goto, S., Monira, P., Isemura, M., & Nakamura, Y., Anti-inflammatory Action of Green Tea. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 15(2) (2016) 74–90.
[50] Ouattara, B., Simard, R. E., Holley, R. A., Piette, G. J. P., & Bégin, A., Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37(2–3) (1997) 155–162.
[51] Panda, A., Chakraborty, D., Sarkar, I., Khan, I., and Sa, G. 2017.New insights into therapeutic activity and anticancer properties of curcumin, J Exp Pharmacol., (2017) 9: 31–45.
[52] Quan, Y., Gong, L., He, J., Zhou, Y., Liu, M., Cao, Z., Li, Y., & Peng, C., Aloe emodin induces hepatotoxicity by activating NF-?B inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicology Letters, 306 (2019) 66–79.
[53] Rahmani, A., Al Zohairy, M., Aly S. and Khan M., Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways,BioMed Research International, (2014) 1-15.
[54] Rai, B. K., Tawa, G. J., Katz, A. H., & Humblet, C., Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: Application to H3 antagonists. Proteins: Structure, Function and Bioinformatics, 78(2) (2010) 457–473.
[55] Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., Yang, L., TCMSP: a database of systems pharmacology for drug discovery from herbal medicines,J Cheminform. 6 (13) (2014).
[56] Ruhl, C. E., & Everhart, J. E., Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology, 128(1) (2005) 24–32.
[57] Ryerson, B., Eheman, C., Altekruse, S., Ward, J., Jemal, A., Sherman, R., Henley, S., Holtzman, D., Lake, A., Noone, A., Anderson, R., Ma, J., Ly, K., Cronin, K., Penberthy, L., Kohler, B. 2016. ., Annual report to the nation on the status of cancer featuring the increasing incidence of liver cancer, Cancer., 122(9) 1312-1337.
[58] Sahin, K., Orhan, C., Tuzcu, M., Sahin, N., Ali, S., Bahcecioglu, I. H., Guler, O., Ozercan, I., Ilhan, N., & Kucuk, O., Orally administered lycopene attenuates diethylnitrosamine-induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways. Nutrition and Cancer, 66(4) (2014) 590–598.
[59] Saraswati, S., Alhaider, A., Abdelgadir, A. M., Tanwer, P., & Korashy, H. M., Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Communication and Signaling, 17(1) (2019) 127.,
[60] Sharma, G., Raturi, K., Dang, S., Gupta, S., & Gabrani, R., Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. Journal of Asian Natural Products Research, 16(5) (2014) 535–541.
[61] Shoichet, B. K. (2004). Virtual screening of chemical libraries. In Nature 432(7019) (2004) 862–865., Nature.
[62] Song, C. M., Lim, S. J., & Tong, J. C., Recent advances in computer-aided drug design. In Briefings in Bioinformatics 1(5) (2009) 579–591., Brief Bioinform.
[63] Stice, C. P., Liu, C., Aizawa, K., Greenberg, A. S., Ausman, L. M., & Wang, X. D., Dietary tomato powder inhibits alcohol-induced hepatic injury by suppressing cytochrome p450 2E1 induction in rodent models. Archives of Biochemistry and Biophysics, 572 (2015) 81–88.
[64] Takahashi, Y., Hara, Y., Imanaka, M., Wanibuchi, H., Tanaka, K., Ishikawa, T., Mori, S., & Fukusato, T., No inhibitory effects of (-)-epigallocatechin gallate and lycopene on spontaneous hepatotumorigenesis in C3H/HeN mice. Fukushima Journal of Medical Science, 56(1), 17–27., (2010).
[65] Tamura, T., Wada, K., Konishi, K., Goto, Y., Mizuta, F., Koda, S., Hori, A., Tanabashi, S., Matsushita, S., Tokimitsu, N., & Nagata, C., Coffee, Green Tea, and Caffeine Intake and Liver Cancer Risk: A Prospective Cohort Study. Nutrition and Cancer, 70(8) (2018) 1210–1216.
[66] Uesato, S., Kitagawa, Y., Kamishimoto, M., Kumagai, A., Hori, H., & Nagasawa, H., Inhibition of green tea catechins against the growth of cancerous human colon and hepatic epithelial cells. Cancer Letters, 170(1) (2001) 41–44.
[67] Varghese, L., Agarwal, C., Tyagi, A. Singh, R., Agarwal, R. 2006. Silibinin Efficacy against Human Hepatocellular Carcinoma, Clinical Cancer Research, 11(23) 8441-8.
[68] Waldum, H., Sandvik, A., Brenna, E., Fossmark, R., Qvigstad, G., and Soga, J., Classification of tumours, J Exp Clin Cancer Res. 27(1) (2008) 70.
[69] Wang, J., Wang, C. and Bu, G., Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signalling pathway,Exp Ther Med. 15(4) (2018) 3650–3658.
[70] Wang, N., & Feng, Y., Elaborating the role of natural products-induced autophagy in cancer treatment: Achievements and artifacts in the state of the art. In BioMed Research International (Vol. 2015). Hindawi Publishing Corporation. , (2015)
[71] Wang, Q., Dai, X., Yang, W., Wang, H., Zhao, H., Yang, F., Yang, Y., Li, J., & Lv, X. (2015). Caffeine protects against alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB pathway in rat hepatic stellate cells. International Immunopharmacology, 25(2) (2015) 340–352.
[72] Wang, W., Xiong, X., Li, X., Zhang, Q., Yang, W., & Du, L., In silico investigation of the anti-tumor mechanisms of epigallocatechin-3-gallate. Molecules, 24(7) (2019)
[73] Wang, Z., Ren, J., Jin, N., Liu, X., & Li, X., Is Crocin a Potential Anti-tumor Candidate Targeting Microtubules? Computational Insights From Molecular Docking and Dynamics Simulations. Frontiers in Molecular Biosciences, 7., (2020).
[74] Wu, M., Clinical research advances in primary liver cancer,World J Gastroenterol 4(6) (1998) 471–474.
[75] Xiaoxv Dong, X.,Fu, J., Yin, X.,Cao, S., Li, X., Lin, L., Huyiligeqi. And Ni, J. 2016. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics, Phytother Res. 30(8) 1207–1218.
[76] Yamashita, T. and Kaneko, S., [Liver Cancer], Rinsho Byori. 64(7) (2016) 787-796.
[77] Yao, C., Liu, B. B., Qian, X. D., Li, L. Q., Cao, H. Bin, Guo, Q. S., & Zhou, G. F., Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity., (2018). OncoTargets and Therapy, 11, 2017–2028.
[78] Yi, J., Yang, J., He, R., Gao, F., Sang, H., Tang, X., & Ye, R. D., Emodin Enhances Arsenic Trioxide-Induced Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Survival Signaling. Cancer Research, 64(1) (2004) 108–116.
[79] Yu W and Jr MacKerell A., Computer-Aided Drug Design Methods,Methods Mol Biol. 1520 (2017) 85–106.
[80] Yu, J. Q., Bao, W., & Lei, J. C. (2013). Emodin regulates apoptotic pathway in human liver cancer cells. Phytotherapy Research, 27(2) (2013) 251–257.
[81] Zhang, H., Cao, D., Cui, W., Ji, M., Qian, X., & Zhong, L. (2010). Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radical Biology and Medicine, 49(12) (2010–2018).
[82] Zhang, Ling, He, D., Li, K., Liu, H., Wang, B., Zheng, L., & Li, J., Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomedicine and Pharmacotherapy, 90 (2017) 222–228.
[83] Zhang, Lisha, & Hung, M. C., Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene, 12(3) (1996) 571–576.
[84] Zhang, P., Wang, Q.,Lin, Z.,Yang, P.,Dou, K.and Zhang, R. 2019. Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake, Onco Targets Ther. 12: 11751–11763.
[85] Zhang, Y., Owusu, L., Duan, W., Jiang, T., Zang, S., Ahmed, A., & Xin, Y., (2013). Anti-metastatic and differential effects on protein expression of epigallocatechin-3-gallate in HCCLM6 hepatocellular carcinoma cells. International Journal of Molecular Medicine, 32(4) 959–964.

Liver Cancer, CADD, Phytochemicals, Natural medicine, Drug resistance.