Research Article | Open Access | Download PDF
Volume 11 | Issue 2 | Year 2021 | Article Id. IJBTT-V11I2P603 | DOI : https://doi.org/10.14445/22490183/IJBTT-V11I2P603Eradication of Ovarian Cancer Stem Cells in Ovarian Cancer Using Stem Cell Therapy
Nirav Parmar, Vinod Kumar Gupta
Received | Revised | Accepted |
---|---|---|
10 May 2021 | 11 Jun 2021 | 22 May 2021 |
Citation :
Nirav Parmar, Vinod Kumar Gupta, "Eradication of Ovarian Cancer Stem Cells in Ovarian Cancer Using Stem Cell Therapy," International Journal of Computer Trends and Technology (IJCTT), vol. 11, no. 2, pp. 15-24, 2021. Crossref, https://doi.org/10.14445/22490183/IJBTT-V11I2P603
Abstract
One of the most frequent gynaecological malignancies in the world and one of the main causes of cancer-based female death is ovarian cancer. About 3 out of 4 (72.4 percent) women with OC survive for at least one year following diagnosis for all forms of ovarian cancer. Five years after diagnosis, almost half (46.2 per cent) of women with OC are still living. Ovarian epithelial malignancies are mostly imported from the endometrial or fallopian tube epithelium. Ovarian cancer therapy is difficult because of a frequent recurrence of diseases and further difficult owing to chemical resistance. Cancer stem cells (CSCs) continue to get interest since they are known to withstand chemical treatment, to renovate themselves, and to re-populate the bulk cell tumour. CSCs also seem to respond quickly to environmental, immunological and pharmacological indications. The flexibility and capacity to inactivate or activate signaling pathways that support their lifespan has been and remains the difficulty in creating effective CSC-targeted treatments. The identification and comprehension of distinct ovarian CSC markers and the pathways may provide novel therapeutic possibilities that provide different therapy adjuvant choices. Here we will examine the characterization of ovarian CSC in OC and stem, isolation and enhancement of CSC and OCSCs signals and targeted therapies.
Keywords
Ovarian cancer, Cancer stem cell, chemotherapy, CSC marker, Stemness, pharmacologic.
References
[1] H. Chen et al., Large-scale cross-cancer fine-mapping of the
5p15.33 region reveals multiple independent signals., 2477
(2021)., doi: 10.1016/j.xhgg.2021.100041.
[2] L. Jansen et al., Socioeconomic deprivation and cancer survival in
a metropolitan area: An analysis of cancer registry data from
Hamburg, Germany., Lancet Reg. Heal. - Eur., 4(2021) 100063,
doi: 10.1016/j.lanepe.2021.100063.
[3] E. Kempf et al., New cancer cases at the time of SARS-Cov2
pandemic and related public health policies: A persistent and
concerning decrease long after the end of the national lockdown,
Eur. J. Cancer, 150(2021) 260–267, doi:
10.1016/j.ejca.2021.02.015.
[4] W. C. Hahn et al., An expanded universe of cancer targets, Cell,
184(5)(2021) 1142–1155, doi: 10.1016/j.cell.2021.02.020.
[5] K. Tomczak, P. Czerwińska, and M. Wiznerowicz., The Cancer
Genome Atlas (TCGA): An immeasurable source of knowledge,
Wspolczesna Onkol., 1A(2015) A68–A77, doi:
10.5114/wo.2014.47136.
[6] A. Mistarz et al., Induction of Cell Death in Ovarian Cancer Cells
by Doxorubicin and Oncolytic Vaccinia Virus is Associated with
CREB3L1 Activation. Elsevier Inc., (2021).
[7] I. M. Shih, Y. Wang, and T. L. Wang., The Origin of Ovarian
Cancer Species and Precancerous Landscape, Am. J. Pathol.,
191(1)(2021) 26–39, doi: 10.1016/j.ajpath.2020.09.006.
[8] M. Zhang, S. Cheng, Y. Jin, Y. Zhao, and Y. Wang., Roles of
CA125 in diagnosis, prediction, and oncogenesis of ovarian
cancer, Biochim. Biophys. Acta - Rev. Cancer, 1875(2)(2021)
188503, doi: 10.1016/j.bbcan.2021.188503.
[9] P. K. Raghav and Z. Mann., Cancer stem cells targets and
combined therapies to prevent cancer recurrence, Life Sci.,
277(2020) 119465, 2021, doi: 10.1016/j.lfs.2021.119465.
[10] T. Motohara, G. J. Yoshida, and H. Katabuchi., The hallmarks of
ovarian cancer stem cells and niches: Exploring their harmonious
interplay in therapy resistance, Semin. Cancer Biol., (2021), doi:
10.1016/j.semcancer.2021.03.038.
[11] M. Shibata and M. O. Hoque., Targeting cancer stem cells: A
strategy for effective eradication of cancer, Cancers (Basel).,
11(5)(2019) doi: 10.3390/cancers11050732.
[12] R. Xiong, T. Yin, J. L. Gao, and Y. F. Yuan, HOXD9 activates the
TGF-β/smad signaling pathway to promote gastric cancer, Onco.
Targets. Ther., 13(2020) 2163–2172, doi: 10.2147/OTT.S234829.
[13] Y. Wang et al., TP53 mutations in early-stage ovarian carcinoma,
relation to long-term survival, Br. J. Cancer, 90(3)(2004) 678–685
doi: 10.1038/sj.bjc.6601537.
[14] T. Manchana, P. Tantbirojn, and N. Pohthipornthawat, BRCA
immunohistochemistry for screening of BRCA mutation in
epithelial ovarian cancer patients, Gynecol. Oncol. Reports,
33(2020) 100582, doi: 10.1016/j.gore.2020.100582.
[15] T. Rafnar et al., Mutations in BRIP1 confer high risk of ovarian
cancer, Nat. Genet., 43(11)(2011) 1104–1107, doi:
10.1038/ng.955.
[16] A. M. Ray et al., Absence of truncating BRIP1 mutations in
chromosome 17q-linked hereditary prostate cancer families, Br. J.
Cancer, 101(12)( 2009) 2043–2047, doi: 10.1038/sj.bjc.6605433.
[17] L. Havrilesky et al., Prognostic significance of p53 mutation and
p53 overexpression in advanced epithelial ovarian cancer: A
Gynecologic Oncology Group Study, J. Clin. Oncol.,
21(20)(2003) 3814–3825, doi: 10.1200/JCO.2003.11.052.
[18] D. J. Osher et al., Mutation analysis of RAD51D in non-BRCA1/2
ovarian and breast cancer families, Br. J. Cancer, 106(8)(2012)
1460–1463, doi: 10.1038/bjc.2012.87.
[19] C. Loveday et al., Germline mutations in RAD51D confer
susceptibility to ovarian cancer, Nat. Genet., 43(9)(2011) 879–
882, doi: 10.1038/ng.893.
[20] I. G. Campbell et al., Mutation of the PIK3CA gene in ovarian and
breast cancer, Cancer Res., 64(21) (2004) 7678–7681, doi:
10.1158/0008-5472.CAN-04-2933.
[21] B. Karakas, K. E. Bachman, and B. H. Park, Mutation of the
PIK3CA oncogene in human cancers, Br. J. Cancer, 94(4)(2006)
455–459, doi: 10.1038/sj.bjc.6602970.
[22] T. Guo, X. Dong, S. Xie, L. Zhang, P. Zeng, and L. Zhang.,
Cellular mechanism of gene mutations and potential therapeutic
targets in ovarian cancer, Cancer Manag. Res.,13(2021) 3081–
3100, doi: 10.2147/CMAR.S292992.
[23] M. L. Stewart et al., KRAS genomic status predicts the sensitivity
of ovarian cancer cells to decitabine., Cancer Res., 75(14)(2015)
2897–2906, doi: 10.1158/0008-5472.CAN-14-2860.
[24] N. K. Suster and I. Virant-Klun., Presence and role of stem cells in
ovarian cancer, World J. Stem Cells, 11(7)(2019) 383–397, doi:
10.4252/wjsc.v11.i7.383.
[25] I. Virant-Klun et al., Putative stem cells with an embryonic
character isolated from the ovarian surface epithelium of women
with no naturally present follicles and oocytes., Differentiation,
vol. 76(8)(2008) 843–856, doi: 10.1111/j.1432-
0436.2008.00268.x.
[26] I. Virant-Klun and M. Stimpfel., Novel population of small
tumour-initiating stem cells in the ovaries of women with
borderline ovarian cancer., Sci. Rep., 6, (1–23), (2016). doi:
10.1038/srep34730.
[27] S. A. Bapat, A. M. Mali, C. B. Koppikar, and N. K. Kurrey, Stem
and progenitor-like cells contribute to the aggressive behavior of
human epithelial ovarian cancer, Cancer Res., 65(8)(2005) 3025–
3029, 2005, doi: 10.1158/0008-5472.CAN-04-3931.
[28] Cho, “乳鼠心肌提取 HHS Public Access, Physiol. Behav.,
176(1)(2016) 100–106, doi: 10.1038/nature11979.Ovarian.
[29] S. Zhang et al., Identification and characterization of ovarian
cancer-initiating cells from primary human tumors, Cancer Res.,
68(11)(2008) 4311–4320, doi: 10.1158/0008-5472.CAN-08-0364.
[30] M. P. Ponnusamy and S. K. Batra., Ovarian cancer: emerging
concept on cancer stem cells, J. Ovarian Res., 1(1)(2008) 4, doi:
10.1186/1757-2215-1-4.
[31] M. Q. Gao, Y. P. Choi, S. Kang, J. H. Youn, and N. H. Cho.,
CD24+ cells from hierarchically organized ovarian cancer are
enriched in cancer stem cells, Oncogene, 29(18)(2010) 2672–
2680, doi: 10.1038/onc.2010.35.
[32] M. Y. Fong and S. S. Kakar., The role of cancer stem cells and the
side population in epithelial ovarian cancer, Histol. Histopathol.,
25(1)(2010) 113–120, doi: 10.14670/HH-25.113.
[33] M. F. Shi et al., Identification of cancer stem cell-like cells from
human epithelial ovarian carcinoma cell line, Cell. Mol. Life Sci.,
67(22)(2010) 3915–3925, doi: 10.1007/s00018-010-0420-9.
[34] J. D. Sacks and M. V. Barbolina., Expression and function of
CD44 in epithelial ovarian carcinoma, Biomolecules, 5(4)(2015)
3051–3066, doi: 10.3390/biom5043051.
[35] Y. Yan, X. Zuo, and D. Wei., Concise Review: Emerging Role of
CD44 in Cancer Stem Cells: A Promising Biomarker and
Therapeutic Target, Stem Cells Transl. Med., 4(9)(2015) 1033–
1043, doi: 10.5966/sctm.2015-0048.
[36] T. Strobel, L. Swanson, and S. A. Cannistra., In vivo inhibition of
CD44 limits intra-abdominal spread of a human ovarian cancer
xenograft in nude mice: A novel role for CD44 in the process of
peritoneal implantation, Cancer Res., 57(7)(1997) 1228–1232.
[37] G. Yin et al., TWISTing stemness, inflammation and proliferation
of epithelial ovarian cancer cells through MIR199A2/214,
Oncogene, 29(24)(2010) 3545–3553, doi: 10.1038/onc.2010.111.
[38] K. D. Steffensen et al., Prevalence of epithelial ovarian cancer
stem cells correlates with recurrence in early-stage ovarian cancer,
J. Oncol., (2011), doi: 10.1155/2011/620523.
[39] B. M. Foster, D. Zaidi, T. R. Young, M. E. Mobley, and B. A.
Kerr., CD117/c-kit in cancer stem cell-mediated progression and
therapeutic resistance, Biomedicines, 6(1)(2018) 1–19, doi:
10.3390/biomedicines6010031.
[40] B. Yang, X. Yan, L. Liu, C. Jiang, and S. Hou., Overexpression of
the cancer stem cell marker CD117 predicts poor prognosis in
epithelial ovarian cancer patients: Evidence from meta-analysis,
Onco. Targets. Ther., 10(2017) 2951–2961, doi:
10.2147/OTT.S136549.
[41] K. Nakamura et al., CD24 expression is a marker for predicting
clinical outcome and regulates the epithelial-mesenchymaltransition in ovarian cancer via both the Akt and ERK pathways,
Oncol. Rep., 37(6)(2017) 3189–3200, doi: 10.3892/or.2017.5583.
[42] I. Kryczek et al., Expression of aldehyde dehydrogenase and
CD133 defines ovarian cancer stem cells, Int. J. Cancer,
130(1)(2012) 29–39, doi: 10.1002/ijc.25967.
[43] P. Marcato, C. A. Dean, C. A. Giacomantonio, and P. W. K. Lee.,
Aldehyde dehydrogenase its role as a cancer stem cell marker
comes down to the specific isoform, Cell Cycle, 10(9)(2011)
1378–1384, doi: 10.4161/cc.10.9.15486.
[44] M. Rodriguez-Torres and A. L. Allan., Aldehyde dehydrogenase
as a marker and functional mediator of metastasis in solid tumors,
Clin. Exp. Metastasis, 33(1)(2016) 97–113, doi: 10.1007/s10585-
015-9755-9.
[45] M. Roemer, Emily J., West, Kesley L., Northrup, Jessica B.,
Iverson, Jana, “乳鼠心肌提取 HHS Public Access., Physiol.
Behav., 176(12)(2016) 139–148, doi: 10.1038/onc.2014.178.BetaCatenin.
[46] A. D. Steg et al., Targeting the Notch ligand jagged1 in both
tumor cells and stroma in ovarian cancer, Clin. Cancer Res.,
17(17)(2011) 5674–5685, doi: 10.1158/1078-0432.CCR-11-0432.
[47] 2 Amrita M. Nargund1,†, Mark W. Pellegrino1,†, Christopher J.
Fiorese1, 2, Brooke M. Baker1, and Cole M. Haynes1,
“基因的改变NIH Public Access., Bone, 23(1)(2011) 1–7, doi:
10.1158/1535-7163.MCT-10-0563.Targeting.
[48] M. Roy, J. Connor, A. Al-Niaimi, S. L. Rose, and A. Mahajan.,
Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by
immunohistochemistry is associated with chemo-refractoriness in
patients with high-grade ovarian serous carcinoma., Hum. Pathol.,
73(1–6)(2018), doi: 10.1016/j.humpath.2017.06.025.
[49] I. A. Silva et al.,Aldehyde dehydrogenase in combination with
CD133 defines angiogenic ovarian cancer stem cells that portend
poor patient survival, Cancer Res., 71(11)(2011) 3991–4001, doi:
10.1158/0008-5472.CAN-10-3175.
[50] J. J. Duan et al., Strategies for isolating and enriching cancer stem
cells: Well begun is half done, Stem Cells Dev., 22(16)(2013)
2221–2239, doi: 10.1089/scd.2012.0613.
[51] M. Moghbeli, F. Moghbeli, M. M. Forghanifard, and M. R.
Abbaszadegan., Cancer stem cell detection and isolation, Med.
Oncol., 31(9)(2014) 1–7 doi: 10.1007/s12032-014-0069-6.
[52] B. A. Sutermaster and E. M. Darling, Considerations for highyield, high-throughput cell enrichment: fluorescence versus
magnetic sorting, Sci. Rep., 9(1)(1–9) (2019) doi:
10.1038/s41598-018-36698-1.
[53] M. Mehrazma, Z. Madjd, E. Kalantari, M. Panahi, A. Hendi, and
A. Shariftabrizi, Expression of stem cell markers, CD133 and
CD44, in pediatric solid tumors: A study using tissue microarray,
Fetal Pediatr. Pathol., 32(3)(2013) 192–204, doi:
10.3109/15513815.2012.701266.
[54] R. Foster, R. J. Buckanovich, and B. R. Rueda., Ovarian cancer
stem cells: Working towards the root of stemness, Cancer Lett.,
338(1)(2013) 147–157, doi: 10.1016/j.canlet.2012.10.023.
[55] K. Garson and B. C. Vanderhyden., Epithelial ovarian cancer stem
cells: Underlying complexity of a simple paradigm, Reproduction,
149(2)(2015) R59–R70, doi: 10.1530/REP-14-0234.
[56] V. Shah, O. Taratula, O. B. Garbuzenko, O. R. Taratula, L.
Rodriguez-Rodriguez, and T. Minko, Targeted nanomedicine for
suppression of CD44 and simultaneous cell death induction in
ovarian cancer: An optimal delivery of siRNA and anticancer
drug, Clin. Cancer Res., 19(22)(2013) 6193–6204, doi:
10.1158/1078-0432.CCR-13-1536.
[57] L. Cao, M. Shao, J. Schilder, T. Guise, K. S. Mohammad, and D.
Matei., Tissue transglutaminase links TGF-Β, epithelial to
mesenchymal transition and a stem cell phenotype in ovarian
cancer, Oncogene, 31(20)(2012) 2521–2534, doi:
10.1038/onc.2011.429.
[58] A. B. Alvero et al., Molecular phenotyping of human ovarian
cancer stem cells unravel the mechanisms for repair and chemoresistance, Cell Cycle, 8(1)(2009) 158–166, doi:
10.4161/cc.8.1.7533.
[59] A. B. Alvero et al., Stem-like ovarian cancer cells can serve as
tumor vascular progenitors, Stem Cells, 27(10)(2009) 2405–2413,
doi: 10.1002/stem.191.
[60] X. Wei et al., Müllerian inhibiting substance preferentially inhibits
stem/progenitors in human ovarian cancer cell lines compared
with chemotherapeutics, Proc. Natl. Acad. Sci. U. S. A.,
107(44)(2010) 18874–18879,doi: 10.1073/pnas.1012667107.
[61] E. Meng et al., CD44+/CD24- ovarian cancer cells demonstrate
cancer stem cell properties and correlate to survival, Clin. Exp.
Metastasis, 29(8)(2012) 939–948, doi: 10.1007/s10585-012-9482-
4.
[62] M. D. Curley et al., CD133 expression defines a tumor initiating
cell population in primary human ovarian cancer, Stem Cells,
27(12)(2009) 2875–2883, doi: 10.1002/stem.236.
[63] J. Zhang, B. Yuan, H. Zhang, and H. Li., Human epithelial ovarian
cancer cells expressing cd105, cd44 and cd106 surface markers
exhibit increased invasive capacity and drug resistance, Oncol.
Lett., 17(6)(2019) 5351–5360, doi: 10.3892/ol.2019.10221.
[64] X. Zheng, G. Shen, X. Yang, and W. Liu, Most C6 cells are cancer
stem cells: Evidence from clonal and population analyses, Cancer
Res., 67(8)(2007) 3691–3697, doi: 10.1158/0008-5472.CAN-06-
3912.
[65] X. Meng, M. Li, X. Wang, Y. Wang, and D. Ma., Both CD133+
and CD133- subpopulations of A549 and H446 cells contain
cancer-initiating cells., Cancer Sci., 100(6)(2009) 1040–1046, doi:
10.1111/j.1349-7006.2009.01144.x.
[66] M. Gassenmaier et al., CXC chemokine receptor 4 is essential for
maintenance of renal cell carcinoma-initiating cells and predicts
metastasis., Stem Cells, 31(8)(2013) 1467–1476, doi:
10.1002/stem.1407.
[67] M. I. Khan, A. M. Czarnecka, I. Helbrecht, E. Bartnik, F. Lian,
and C. Szczylik,Current approaches in identification and isolation
of human renal cell carcinoma cancer stem cells, Stem Cell Res.
Ther., 6(1)(2015) 1–11, doi: 10.1186/s13287-015-0177-z.
[68] T. N. Almanaa, M. E. Geusz, and R. J. Jamasbi., A New Method
for Identifying Stem-Like Cells in Esophageal Cancer Cell Lines.,
J. Cancer, 4(7) (2013), 536–548, doi: 10.7150/jca.6477.
[69] D. Kim, B. hyun Choi, I. geun Ryoo, and M. K. Kwak., High
NRF2 level mediates cancer stem cell-like properties of aldehyde
dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role
of all-trans retinoic acid in ALDH/NRF2 signaling, Cell Death
Dis., 9(9)(2018), doi: 10.1038/s41419-018-0903-4.
[70] T. Kuroda et al., ALDH1-High Ovarian Cancer Stem-Like Cells
Can Be Isolated from Serous and Clear Cell Adenocarcinoma
Cells, and ALDH1 High Expression Is Associated with Poor
Prognosis, PLoS One, 8(6)(2013), doi:
10.1371/journal.pone.0065158.
[71] J. Song, I. Chang, Z. Chen, M. Kang, and C. Y. Wang.,
Characterization of side populations in HNSCC: Highly invasive,
chemoresistant and abnormal Wnt signaling, PLoS One,
5(7)(2010) 1–9, doi: 10.1371/journal.pone.0011456.
[72] M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C.
Mulligan., Isolation and functional properties of murine
hematopoietic stem cells that are replicating in vivo, J. Exp. Med.,
183(4)(1996) 1797–1806, doi: 10.1084/jem.183.4.1797.
[73] M. Nakatsugawa et al., SOX2 is overexpressed in stem-like cells
of human lung adenocarcinoma and augments the tumorigenicity,
Lab. Investig., 91(12) (2011) 1796–1804, doi:
10.1038/labinvest.2011.140.
[74] K. J. Gangavarpu and W. J. Huss., Isolation and applications of
prostate side population cells based on dye cycle violet efflux,
Curr. Protoc. Toxicol., no. SUPPL.47(2011) 1–18, doi:
10.1002/0471140856.tx2202s47.
[75] Z. Ruan, J. Liu, and Y. Kuang., Isolation and characterization of
side population cells from the human ovarian cancer cell line SKOV-3, Exp. Ther. Med., 10(6)(2015) 2071–2078, doi:
10.3892/etm.2015.2836.
[76] G. Dontu et al., In vitro propagation and transcriptional profiling
of human mammary stem/progenitor cells,” Genes Dev.,
17(10)(2003) 1253–1270, doi: 10.1101/gad.1061803.
[77] K. Abiko et al., PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL
dysfunction, Clin. Cancer Res., 19(6)(2013) 1363–1374, doi:
10.1158/1078-0432.CCR-12-2199.
[78] M. Boesch et al., Heterogeneity of Cancer Stem Cells: Rationale
for Targeting the Stem Cell Niche, Biochim. Biophys. Acta - Rev.
Cancer, 1866(2) (2016) 276–289, doi:
10.1016/j.bbcan.2016.10.003.
[79] C. J. Chang et al., P53 regulates epithelial-mesenchymal transition
and stem cell properties through modulating miRNAs, Nat. Cell
Biol., 13(3), (2011) 317–323, doi: 10.1038/ncb2173.
[80] M. M. Nava, M. T. Raimondi, and R. Pietrabissa, ., Controlling
self-renewal and differentiation of stem cells via mechanical cues,
J. Biomed. Biotechnol., (2012) doi: 10.1155/2012/797410.
[81] J. Panyam., Cancer stem cells, Drug Deliv. Transl. Res.,
3(2)(2013), 111–112, doi: 10.1007/s13346-013-0138-y.
[82] H. Kitamura, K. Okudela, T. Yazawa,H. Sato, and H.
Shimoyamada., Cancer stem cell: Implications in cancer biology
and therapy with special reference to lung cancer, Lung Cancer,
66(3)(2009) 275–281, doi: 10.1016/j.lungcan.2009.07.019.
[83] P. Valent et al., Cancer stem cell definitions and terminology: The
devil is in the details, Nat. Rev. Cancer, 12(11)(2012) 767–775,
doi: 10.1038/nrc3368.
[84] L. T. H. Phi et al., Cancer stem cells (CSCs) in drug resistance and
their therapeutic implications in cancer treatment, Stem Cells
Int.,(2018), doi: 10.1155/2018/5416923.
[85] P. P. Liu et al., Metabolic regulation of cancer cell side population
by glucose through activation of the Akt pathway, Cell Death
Differ., 21(1)(2014) 124–135, doi: 10.1038/cdd.2013.131.
[86] R. Palorini et al., Energy metabolism characterization of a novel
cancer stem cell-like line 3AB-OS, J. Cell. Biochem.,
115(2)(2014) 368–379, doi: 10.1002/jcb.24671.
[87] A. Deshmukh, K. Deshpande, F. Arfuso, P. Newsholme, and A.
Dharmarajan., Cancer stem cell metabolism: A potential target for
cancer therapy, Mol. Cancer, 15(1)(2016) 1–10, doi:
10.1186/s12943-016-0555-x.
[88] J. Liao et al., Ovarian cancer spheroid cells with stem cell-like
properties contribute to tumor generation, metastasis and
chemotherapy resistance through hypoxia-resistant metabolism,
PLoS One, vol. 9, no. 1(2014) 1–13, doi:
10.1371/journal.pone.0084941.
[89] A. Pastò et al., Cancer stem cells from epithelial ovarian cancer
patients privilege oxidative phosphorylation, and resist glucose
deprivation, Oncotarget, 5(12)(2014) 4305–4319, doi:
10.18632/oncotarget., 2010.
[90] L. N. Abdullah and E. K. Chow, Mechanisms of chemoresistance
in cancer stem cells, Clin. Transl. Med., 2(1)(2013) 1–9, doi:
10.1186/2001-1326-2-3.
[91] E. K. H. Chow, L. L. Fan, X. Chen, and J. M. Bishop., Oncogenespecific formation of chemoresistant murine hepatic cancer stem
cells, Hepatology, 56(4)(2012) 1331–1341, doi:
10.1002/hep.25776.
[92] A. B. Shapiro, A. B. Corder, and V. Ling., P-glycoproteinmediated Hoechst 33342 transport out of the lipid bilayer, Eur. J.
Biochem., 250(1)(1997) 115–121, doi: 10.1111/j.1432-
1033.1997.00115.x.
[93] C. W. Scharenberg, M. A. Harkey, and B. Torok-Storb,The
ABCG2 transporter is an efficient Hoechst 33342 efflux pump and
is preferentially expressed by immature human hematopoietic
progenitors, Blood, 99(2)(2002) 507–512, doi:
10.1182/blood.V99.2.507.
[94] P. P. Szotek et al., Ovarian cancer side population defines cells
with stem cell-like characteristics and Mullerian inhibiting
substance responsiveness, Proc. Natl. Acad. Sci. U. S. A.,
103(30)(2006) 11154–11159, doi: 10.1073/pnas.0603672103.
[95] T. Litman et al., The multidrug-resistant phenotype associated
with overexpression of the new ABC half-transporter, MXR
(ABCG2)., J. Cell Sci., 113(11) (2000) 2011–2021, doi:
10.1242/jcs.113.11.2011.
[96] S. Chuthapisith, J. Eremin, M. El-Sheemey, and O. Eremin,
“Breast cancer chemoresistance: Emerging importance of cancer
stem cells, Surg. Oncol., 19(1)(2010) 27–32, doi:
10.1016/j.suronc.2009.01.004.
[97] R. Eyre et al., Reversing paclitaxel resistance in ovarian cancer
cells via inhibition of the abcb1 expressing side population, Tumor
Biol., 35(10) (2014) 9879–9892, doi: 10.1007/s13277-014-2277-2.
[98] L. Hu, C. McArthur, and R. B. Jaffe., Ovarian cancer stem-like
side-population cells are tumourigenic and chemoresistant, Br. J.
Cancer, 102(8)(2010) 1276–1283, doi: 10.1038/sj.bjc.6605626.
[99] D. K. Kim et al., Crucial role of HMGA1 in the self-renewal and
drug resistance of ovarian cancer stem cells, Exp. Mol. Med.,
48(8)(2016) doi: 10.1038/emm.2016.73.
[100] W. S. Dalton et al., A phase III randomized study of oral
verapamil as a chemosensitizer to reverse drug resistance in
patients with refractory myeloma. A southwest oncology group
study, Cancer, 75(3)(1995) 815–820, doi: 10.1002/1097-
0142(19950201)75:3<815::AID-CNCR2820750311>3.0.CO;2-R.
[101] N. E. Sládek., Human aldehyde dehydrogenases: Potential
pathological, pharmacological, and toxicological impact, J.
Biochem. Mol. Toxicol., vol. 17(1)(2003) 7–23, doi:
10.1002/jbt.10057.
[102] J. Liu et al.,Lung cancer tumorigenicity and drug resistance are
maintained through ALDHhiCD44hi tumor initiating cells,
Oncotarget, 4(10)(2013) 1698–1711, doi:
10.18632/oncotarget.1246.
[103] X. Li et al., Intrinsic resistance of tumorigenic breast cancer cells
to chemotherapy, J. Natl. Cancer Inst., 100(9)(2008) 672–679, doi:
10.1093/jnci/djn123.
[104] Z. A. Rasheed et al., Prognostic significance of tumorigenic cells
with mesenchymal features in pancreatic adenocarcinoma, J. Natl.
Cancer Inst., 102(5)(2010) 340–351, doi: 10.1093/jnci/djp535.
[105] A. Lugli et al., Prognostic impact of the expression of putative
cancer stem cell markers CD133, CD166, CD44s, EpCAM, and
ALDH1 in colorectal cancer, Br. J. Cancer, 103(3)(2010) 382–
390, doi: 10.1038/sj.bjc.6605762.
[106] X. Liu, Z. Chen, T. Lan, P. Liang, and Q. Tao., Upregulation of
interleukin-8 and activin A induces osteoclastogenesis in
ameloblastoma, Int. J. Mol. Med., 43(6)(2019) 2329–2340, doi:
10.3892/ijmm.2019.4171.
[107] J. C. Patton, G. G. Sherman, A. H. Coovadia, W. S. Stevens, and
T. M. Meyers., Ultrasensitive human immunodeficiency virus type
1 p24 antigen assay modified for use on dried whole-blood spots
as a reliable, affordable test for infant diagnosis, Clin. Vaccine
Immunol.,13(1)(2006) 152–155, doi: 10.1128/CVI.13.1.152-
155.2006.
[108] Y. Li, T. Chen, J. Zhu, H. Zhang, H. Jiang, and H. Sun, High
ALDH activity defines ovarian cancer stem-like cells with
enhanced invasiveness and EMT progress which are responsible
for tumor invasion, Biochem. Biophys. Res. Commun.,
495(1)(2018) 1081–1088, doi: 10.1016/j.bbrc.2017.11.117.
[109] S. J. Dylla et al., Colorectal cancer stem cells are enriched in
xenogeneic tumors following chemotherapy, PLoS One,
3(6)(2008), doi: 10.1371/journal.pone.0002428.
[110] J. T. Opferman and A. Kothari., Anti-apoptotic BCL-2 family
members in development, Cell Death Differ., 25(1)(2018) 37–45,
doi: 10.1038/cdd.2017.170.
[111] L. Pegoraro et al., from an acute B-cell leukemia, 81(1984) 7166–
7170.
[112] W. B. Graninger, M. Seto, B. Boutain, P. Goldman, and S. J.
Korsmeyer., Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in
normal and neoplastic cells, J. Clin. Invest., 80(5)(1987) 1512–
1515, doi: 10.1172/JCI113235.
[113] Z. Madjd, A. Z. Mehrjerdi, A. M. Sharifi, S. Molanaei, S. Z.
Shahzadi, and M. Asadi-Lari., CD44+ cancer cells express higher
levels of the anti-apoptotic protein Bcl-2 in breast tumours, Cancer
Immun., 9(2009) 1–7.
[114] M. Konopleva et al., The anti-apoptotic genes Bcl-XL and Bcl-2
are over-expressed and contribute to chemoresistance of nonproliferating leukaemic CD34+ cells, Br. J. Haematol.,
118(2)(2002) 521–534, doi: 10.1046/j.1365-2141.2002.03637.x.
[115] J. Williams et al., Expression of Bcl-xL in ovarian carcinoma isassociated with chemoresistance and recurrent disease, Gynecol.
Oncol., 96(2)(2005) 287–295, doi: 10.1016/j.ygyno.2004.10.026.
[116] M. Wong et al., Navitoclax (ABT-263) reduces Bcl-x L-mediated
chemoresistance in ovarian cancer models,Mol. Cancer Ther.,
11(4)(2012) 1026–1035, doi: 10.1158/1535-7163.MCT-11-0693.
[117] J. Witham et al., The Bcl-2/Bcl-XL family inhibitor ABT-737
sensitizes ovarian cancer cells to carboplatin, Clin. Cancer Res.,
13(23)(2007),7191–7198, doi: 10.1158/1078-0432.CCR-07-0362.
[118] T. Reya et al., A role for Wnt signalling in self-renewal of
haematopoietic stem cells, Nature, 423(6938)(2003) 409–414, doi:
10.1038/nature01593.
[119] C. Zhao et al., Loss of β-Catenin Impairs the Renewal of Normal
and CML Stem Cells In Vivo., Cancer Cell, 12(6)(2007) 528–541,
doi: 10.1016/j.ccr.2007.11.003.
[120] I. Bisson and D. M. Prowse., WNT signaling regulates selfrenewal and differentiation of prostate cancer cells with stem cell
characteristics, Cell Res., 19(6)(2009) 683–697, doi:
10.1038/cr.2009.43.
[121] Y. Capodanno, F. O. Buishand, L. Y. Pang, J. Kirpensteijn, J. A.
Mol, and D. J. Argyle., Notch pathway inhibition targets
chemoresistant insulinoma cancer stem cells, Endocr. Relat.
Cancer, 25(2)(2018) 131–144, doi: 10.1530/ERC-17-0415.
[122] M. R. Abbaszadegan, A. Riahi, M. M. Forghanifard, and M.
Moghbeli., WNT and NOTCH signaling pathways as activators
for epidermal growth factor receptor in esophageal squamous cell
carcinoma, Cell. Mol. Biol. Lett., 23(1)(2018) 1–9, doi:
10.1186/s11658-018-0109-x.
[123] W. Yang et al., Wnt/β-catenin signaling contributes to activation
of normal and tumorigenic liver progenitor cells, Cancer Res.,
68(11)(2008) 4287–4295, doi: 10.1158/0008-5472.CAN-07-6691.
[124] P. Ranganathan, K. L. Weaver, and A. J. Capobianco, Notch
signalling in solid tumours: A little bit of everything but not all the
time, Nat. Rev. Cancer, 11(5)(2011) 338–351, doi:
10.1038/nrc3035.
[125] M. Moghbeli, H. Mosannen Mozaffari, B. Memar, M. M.
Forghanifard, M. Gholamin, and M. R. Abbaszadegan., Role of
MAML1 in targeted therapy against the esophageal cancer stem
cells, J. Transl. Med., 17(1)(2019) 1–12, doi: 10.1186/s12967-
019-1876-5.
[126] M. Moghbeli, A. Sadrizadeh, M. M. Forghanifard, H. M.
Mozaffari, E. Golmakani, and M. R. Abbaszadegan, Role of Msi1
and PYGO2 in esophageal squamous cell carcinoma depth of
invasion, J. Cell Commun. Signal., 10(1)(2016) 49–53, doi:
10.1007/s12079-015-0314-6.
[127] M. R. Abbaszadegan and M. Moghbeli., Role of MAML1 and
MEIS1 in Esophageal Squamous Cell Carcinoma Depth of
Invasion, Pathol. Oncol. Res., 24(2)(2018) 245–250, doi:
10.1007/s12253-017-0243-1.
[128] R. D. Meng et al., γ-secretase inhibitors abrogate oxaliplatininduced activation of the Notch-1 signaling pathway in colon
cancer cells resulting in enhanced chemosensitivity, Cancer Res.,
69(2) (2009) 573–582, doi: 10.1158/0008-5472.CAN-08-2088.
[129] S. M. McAuliffe et al., Targeting Notch, a key pathway for
ovarian cancer stem cells, sensitizes tumors to platinum therapy,
Proc. Natl. Acad. Sci. U. S. A., 109(43)(2012) doi:
10.1073/pnas.1206400109.
[130] C. L. W. Haygood., Ovarian cancer stem cells: Can targeted
therapy lead to improved progression-free survival?, World J.
Stem Cells, 6(4)(2014) 441, doi: 10.4252/wjsc.v6.i4.441.
[131] Q. R. Yu., Stem cells and cancer stem cells, J. Clin. Rehabil.
Tissue Eng. Res., 11(15)(2007) 2948–2951, doi:
10.5892/intech.csc.2011.0328.
[132] Y. Komiya and R. Habas., Wnt signal transduction pathways,
Organogenesis, 4(2)(2008) 68–75, doi: 10.4161/org.4.2.5851.
[133] B. T. MacDonald, K. Tamai, and X. He., Wnt/β-Catenin
Signaling: Components, Mechanisms, and Diseases, Dev. Cell,
17(1)(2009) 9–26, doi: 10.1016/j.devcel.2009.06.016.
[134] S. S. Zhang, Z. W. Huang, L. X. Li, J. J. Fu, and B. Xiao.,
Identification of CD200+ colorectal cancer stem cells and their
gene expression profile, Oncol. Rep., 36(4)(2016) 2252–2260, doi:
10.3892/or.2016.5039.
[135] R. C. Arend, A. I. Londoño-Joshi, J. M. Straughn, and D. J.
Buchsbaum., The Wnt/β-catenin pathway in ovarian cancer: A
review, Gynecol. Oncol., 131(3)(2013) 772–779, doi:
10.1016/j.ygyno.2013.09.034.
[136] A. J. Schindler, A. Watanabe, and S. B. Howell., LGR5 and LGR6
in stem cell biology and ovarian cancer, Oncotarget, 9(1)(2018)
1346–1355, doi: 10.18632/oncotarget.20178.
[137] X. Zhang and J. Hao., Development of anticancer agents targeting
the wnt/β-catenin signaling, Am. J. Cancer Res., 5(8)(2015) 2344–
2360.
[138] K. H. Emami et al., A small molecule inhibitor of β-catenin/cyclic
AMP response element-binding protein transcription, Proc. Natl.
Acad. Sci. U. S. A., 101(34)(2004) 12682–12687, doi:
10.1073/pnas.0404875101.
[139] M. Varjosalo and J. Taipale., Hedgehog: Functions and
mechanisms, Genes Dev., 22(18)(2008) 2454–2472,doi:
10.1101/gad.1693608.
[140] C. Zhao et al., Hedgehog signalling is essential for maintenance of
cancer stem cells in myeloid leukaemia, Nature, 458(7239)(2009)
776–779, doi: 10.1038/nature07737.
[141] A. A. Merchant and W. Matsui., Targeting Hedgehog - A cancer
stem cell pathway, Clin. Cancer Res., 16(12)(2010) 3130–3140,
doi: 10.1158/1078-0432.CCR-09-2846.
[142] V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, and A.
Ruiz i Altaba., HEDGEHOG-GLI1 Signaling Regulates Human
Glioma Growth, Cancer Stem Cell Self-Renewal, and
Tumorigenicity, Curr. Biol., 17(2)(2007) 165–172, doi:
10.1016/j.cub.2006.11.033.
[143] E. E. Bar et al., Cyclopamine-Mediated Hedgehog Pathway
Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma, Stem
Cells, 25(10)(2007) 2524–2533, doi: 10.1634/stemcells.2007-
0166.
[144] V. Justilien, M. P. Walsh, S. A. Ali, E. A. Thompson, N. R.
Murray, and A. P. Fields., The PRKCI and SOX2 Oncogenes Are
Coamplified and Cooperate to Activate Hedgehog Signaling in
Lung Squamous Cell Carcinoma, Cancer Cell, 25(2)(2014) 139–
151, doi: 10.1016/j.ccr.2014.01.008.
[145] C. Dierks et al., Expansion of Bcr-Abl-Positive Leukemic Stem
Cells Is Dependent on Hedgehog Pathway Activation, Cancer
Cell, 14(3)(2008) 238–249,doi: 10.1016/j.ccr.2008.08.003.
[146] C. D. Peacock et al., Hedgehog signaling maintains a tumor stem
cell compartment in multiple myeloma, Proc. Natl. Acad. Sci. U.
S. A., 104(10)(2007) 4048–4053, doi: 10.1073/pnas.0611682104.
[147] D. D. Von Hoff et al., Inhibition of the Hedgehog Pathway in
Advanced Basal-Cell Carcinoma, N. Engl. J. Med., 361(12)(2009)
1164–1172, doi: 10.1056/nejmoa0905360.
[148] A. Sekulic et al., Efficacy and Safety of Vismodegib in Advanced
Basal-Cell Carcinoma, N. Engl. J. Med., 366(23)(2012) 2171–
2179, doi: 10.1056/nejmoa1113713.
[149] A. Ray, E. Meng, E. Reed, L. A. Shevde, and R. P. Rocconi.,
Hedgehog signaling pathway regulates the growth of ovarian
cancer spheroid forming cells, Int. J. Oncol., 39(4)(2011) 797–
804, doi: 10.3892/ijo.2011.1093.
[150] H. Q. Doan, S. Silapunt, and M. R. Migden., Sonidegib, a novel
smoothened inhibitor for the treatment of advanced basal cell
carcinoma, Onco. Targets. Ther., 9(2016) 5671–5678, doi:
10.2147/OTT.S108171.
[151] J. Ericson, S. Morton, A. Kawakami, H. Roelink, and T. M.
Jessell., Two critical periods of Sonic Hedgehog signaling
required for the specification of motor neuron identity,Cell,
87(4)(1996) 661–673, doi: 10.1016/S0092-8674(00)81386-0.
[152] I. Bosanac et al., The structure of SHH in complex with HHIP
reveals a recognition role for the Shh pseudo active site in
signaling, Nat. Struct. Mol. Biol., 16(7)(2009) 691–697, doi:
10.1038/nsmb.1632.
[153] S. Artavanis-Tsakonas, M. D. Rand, and R. J. Lake., Notch
signaling: Cell fate control and signal integration in development,
Science 284(80)., 5415, 770–776, (1999), doi:
10.1126/science.284.5415.770.
[154] M. Moghbeli, M. R. Abbaszadegan, E. Golmakani, and M. M.
Forghanifard., Correlation of Wnt and NOTCH pathways in
esophageal squamous cell carcinoma, J. Cell Commun. Signal.,
10(2)(2016) 129–135,doi: 10.1007/s12079-016-0320-3.
[155] R. Barnawi et al.,Fascin Is Critical for the Maintenance of Breast
Cancer Stem Cell Pool Predominantly via the Activation of the
Notch Self-Renewal Pathway, Stem Cells, 34(12)(2016) 2799–
2813, doi: 10.1002/stem.2473.
[156] E. V. Abel et al., The notch pathway is important in maintaining
the cancer stem cell population in pancreatic cancer, PLoS One,
9(3)(2014) doi: 10.1371/journal.pone.0091983.
[157] S. Pant et al., A first-in-human phase i study of the oral Notch
inhibitor, LY900009, in patients with advanced cancer, Eur. J.
Cancer, 56(2016) 1–9, doi: 10.1016/j.ejca.2015.11.021.
[158] J. Huang et al., Dll4 Inhibition plus Aflibercept markedly reduces
ovarian tumor growth, Mol. Cancer Ther., 15(6)(2016) 1344–
1352, doi: 10.1158/1535-7163.MCT-15-0144.
[159] J. A. R. Jonathan Posner and Bradley S. Peterson.,
基因的改变NIH Public Access, Bone, 23(1)(2008) 1–7. doi:
10.1158/1078-0432.CCR-11-3250.Metronomic.
[160] S. D. Li and S. B. Howell., CD44-targeted microparticles for
delivery of cisplatin to peritoneal metastases, Mol. Pharm.,
7(1)(2010) 280–290 doi: 10.1021/mp900242f.
[161] A. P. N. Skubitz et al., Targeting CD133 in an in vivo ovarian
cancer model reduces ovarian cancer progression, Gynecol.
Oncol., 130(3)(2013) 579–587, doi: 10.1016/j.ygyno.2013.05.027.
[162] D. Su et al., Targeting CD24 for treatment of ovarian cancer by
short hairpin RNA, Cytotherapy, 11(5) (2009) 642–652,doi:
10.1080/14653240902878308.
[163] M. R. Raspollini, G. Amunni, A. Villanucci, G. Baroni, A. Taddei,
and G. L. Taddei., c-KIT expression and correlation with
chemotherapy resistance in ovarian carcinoma: An
immunocytochemical study, Ann. Oncol., 15(4) (2004) 594–597,
doi: 10.1093/annonc/mdh139.
[164] W. K. Chau, C. K. Ip, A. S. C. Mak, H. C. Lai, and A. S. T.
Wong., C-Kit mediates chemoresistance and tumor-initiating
capacity of ovarian cancer cells through activation of Wnt/βcatenin-ATP-binding cassette G2 signaling, Oncogene,
32(22)(2013) 2767–2781, 2013, doi: 10.1038/onc.2012.290.
[165] R. J. Schilder et al., Phase II evaluation of imatinib mesylate in the
treatment of recurrent or persistent epithelial ovarian or primary
peritoneal carcinoma: A gynecologic oncology group study., J.
Clin. Oncol., 26(20)(2008) 3418–3425, doi:
10.1200/JCO.2007.14.3420.
[166] H. Chung et al., The effect of salinomycin on ovarian cancer stemlike cells., Obstet. Gynecol. Sci., 59(4)(2016) 261, doi:
10.5468/ogs.2016.59.4.261.
[167]M. G. T. and J. F. S. Wager., 基因的改变NIH Public Access,
Bone, 23(1)(2011) 1–7,doi:
10.1016/j.ygyno.2012.07.115.Metformin.
[168] F. Casagrande et al., Eradication of chemotherapy-resistant
CD44+ human ovarian cancer stem cells in mice by intraperitoneal
administration of clostridium perfringens enterotoxin, Cancer,
117(24)(2011) 5519–5528, doi: 10.1002/cncr.26215.