International Journal of Biotech
Trends and Technology

Research Article | Open Access | Download PDF
Volume 11 | Issue 2 | Year 2021 | Article Id. IJBTT-V11I2P603 | DOI : https://doi.org/10.14445/22490183/IJBTT-V11I2P603

Eradication of Ovarian Cancer Stem Cells in Ovarian Cancer Using Stem Cell Therapy


Nirav Parmar, Vinod Kumar Gupta

Received Revised Accepted
10 May 2021 11 Jun 2021 22 May 2021

Citation :

Nirav Parmar, Vinod Kumar Gupta, "Eradication of Ovarian Cancer Stem Cells in Ovarian Cancer Using Stem Cell Therapy," International Journal of Computer Trends and Technology (IJCTT), vol. 11, no. 2, pp. 15-24, 2021. Crossref, https://doi.org/10.14445/22490183/IJBTT-V11I2P603

Abstract

One of the most frequent gynaecological malignancies in the world and one of the main causes of cancer-based female death is ovarian cancer. About 3 out of 4 (72.4 percent) women with OC survive for at least one year following diagnosis for all forms of ovarian cancer. Five years after diagnosis, almost half (46.2 per cent) of women with OC are still living. Ovarian epithelial malignancies are mostly imported from the endometrial or fallopian tube epithelium. Ovarian cancer therapy is difficult because of a frequent recurrence of diseases and further difficult owing to chemical resistance. Cancer stem cells (CSCs) continue to get interest since they are known to withstand chemical treatment, to renovate themselves, and to re-populate the bulk cell tumour. CSCs also seem to respond quickly to environmental, immunological and pharmacological indications. The flexibility and capacity to inactivate or activate signaling pathways that support their lifespan has been and remains the difficulty in creating effective CSC-targeted treatments. The identification and comprehension of distinct ovarian CSC markers and the pathways may provide novel therapeutic possibilities that provide different therapy adjuvant choices. Here we will examine the characterization of ovarian CSC in OC and stem, isolation and enhancement of CSC and OCSCs signals and targeted therapies.

Keywords

Ovarian cancer, Cancer stem cell, chemotherapy, CSC marker, Stemness, pharmacologic.

References

[1] H. Chen et al., Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals., 2477 (2021)., doi: 10.1016/j.xhgg.2021.100041.
[2] L. Jansen et al., Socioeconomic deprivation and cancer survival in a metropolitan area: An analysis of cancer registry data from Hamburg, Germany., Lancet Reg. Heal. - Eur., 4(2021) 100063, doi: 10.1016/j.lanepe.2021.100063.
[3] E. Kempf et al., New cancer cases at the time of SARS-Cov2 pandemic and related public health policies: A persistent and concerning decrease long after the end of the national lockdown, Eur. J. Cancer, 150(2021) 260–267, doi: 10.1016/j.ejca.2021.02.015.
[4] W. C. Hahn et al., An expanded universe of cancer targets, Cell, 184(5)(2021) 1142–1155, doi: 10.1016/j.cell.2021.02.020.
[5] K. Tomczak, P. Czerwińska, and M. Wiznerowicz., The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge, Wspolczesna Onkol., 1A(2015) A68–A77, doi: 10.5114/wo.2014.47136.
[6] A. Mistarz et al., Induction of Cell Death in Ovarian Cancer Cells by Doxorubicin and Oncolytic Vaccinia Virus is Associated with CREB3L1 Activation. Elsevier Inc., (2021).
[7] I. M. Shih, Y. Wang, and T. L. Wang., The Origin of Ovarian Cancer Species and Precancerous Landscape, Am. J. Pathol., 191(1)(2021) 26–39, doi: 10.1016/j.ajpath.2020.09.006.
[8] M. Zhang, S. Cheng, Y. Jin, Y. Zhao, and Y. Wang., Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer, Biochim. Biophys. Acta - Rev. Cancer, 1875(2)(2021) 188503, doi: 10.1016/j.bbcan.2021.188503.
[9] P. K. Raghav and Z. Mann., Cancer stem cells targets and combined therapies to prevent cancer recurrence, Life Sci., 277(2020) 119465, 2021, doi: 10.1016/j.lfs.2021.119465.
[10] T. Motohara, G. J. Yoshida, and H. Katabuchi., The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance, Semin. Cancer Biol., (2021), doi: 10.1016/j.semcancer.2021.03.038.
[11] M. Shibata and M. O. Hoque., Targeting cancer stem cells: A strategy for effective eradication of cancer, Cancers (Basel)., 11(5)(2019) doi: 10.3390/cancers11050732.
[12] R. Xiong, T. Yin, J. L. Gao, and Y. F. Yuan, HOXD9 activates the TGF-β/smad signaling pathway to promote gastric cancer, Onco. Targets. Ther., 13(2020) 2163–2172, doi: 10.2147/OTT.S234829.
[13] Y. Wang et al., TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival, Br. J. Cancer, 90(3)(2004) 678–685 doi: 10.1038/sj.bjc.6601537.
[14] T. Manchana, P. Tantbirojn, and N. Pohthipornthawat, BRCA immunohistochemistry for screening of BRCA mutation in epithelial ovarian cancer patients, Gynecol. Oncol. Reports, 33(2020) 100582, doi: 10.1016/j.gore.2020.100582.
[15] T. Rafnar et al., Mutations in BRIP1 confer high risk of ovarian cancer, Nat. Genet., 43(11)(2011) 1104–1107, doi: 10.1038/ng.955.
[16] A. M. Ray et al., Absence of truncating BRIP1 mutations in chromosome 17q-linked hereditary prostate cancer families, Br. J. Cancer, 101(12)( 2009) 2043–2047, doi: 10.1038/sj.bjc.6605433.
[17] L. Havrilesky et al., Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: A Gynecologic Oncology Group Study, J. Clin. Oncol., 21(20)(2003) 3814–3825, doi: 10.1200/JCO.2003.11.052.
[18] D. J. Osher et al., Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families, Br. J. Cancer, 106(8)(2012) 1460–1463, doi: 10.1038/bjc.2012.87.
[19] C. Loveday et al., Germline mutations in RAD51D confer susceptibility to ovarian cancer, Nat. Genet., 43(9)(2011) 879– 882, doi: 10.1038/ng.893.
[20] I. G. Campbell et al., Mutation of the PIK3CA gene in ovarian and breast cancer, Cancer Res., 64(21) (2004) 7678–7681, doi: 10.1158/0008-5472.CAN-04-2933.
[21] B. Karakas, K. E. Bachman, and B. H. Park, Mutation of the PIK3CA oncogene in human cancers, Br. J. Cancer, 94(4)(2006) 455–459, doi: 10.1038/sj.bjc.6602970.
[22] T. Guo, X. Dong, S. Xie, L. Zhang, P. Zeng, and L. Zhang., Cellular mechanism of gene mutations and potential therapeutic targets in ovarian cancer, Cancer Manag. Res.,13(2021) 3081– 3100, doi: 10.2147/CMAR.S292992.
[23] M. L. Stewart et al., KRAS genomic status predicts the sensitivity of ovarian cancer cells to decitabine., Cancer Res., 75(14)(2015) 2897–2906, doi: 10.1158/0008-5472.CAN-14-2860.
[24] N. K. Suster and I. Virant-Klun., Presence and role of stem cells in ovarian cancer, World J. Stem Cells, 11(7)(2019) 383–397, doi: 10.4252/wjsc.v11.i7.383.
[25] I. Virant-Klun et al., Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes., Differentiation, vol. 76(8)(2008) 843–856, doi: 10.1111/j.1432- 0436.2008.00268.x.
[26] I. Virant-Klun and M. Stimpfel., Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer., Sci. Rep., 6, (1–23), (2016). doi: 10.1038/srep34730.
[27] S. A. Bapat, A. M. Mali, C. B. Koppikar, and N. K. Kurrey, Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer, Cancer Res., 65(8)(2005) 3025– 3029, 2005, doi: 10.1158/0008-5472.CAN-04-3931.
[28] Cho, “乳鼠心肌提取 HHS Public Access, Physiol. Behav., 176(1)(2016) 100–106, doi: 10.1038/nature11979.Ovarian.
[29] S. Zhang et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors, Cancer Res., 68(11)(2008) 4311–4320, doi: 10.1158/0008-5472.CAN-08-0364.
[30] M. P. Ponnusamy and S. K. Batra., Ovarian cancer: emerging concept on cancer stem cells, J. Ovarian Res., 1(1)(2008) 4, doi: 10.1186/1757-2215-1-4. [31] M. Q. Gao, Y. P. Choi, S. Kang, J. H. Youn, and N. H. Cho., CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells, Oncogene, 29(18)(2010) 2672– 2680, doi: 10.1038/onc.2010.35.
[32] M. Y. Fong and S. S. Kakar., The role of cancer stem cells and the side population in epithelial ovarian cancer, Histol. Histopathol., 25(1)(2010) 113–120, doi: 10.14670/HH-25.113.
[33] M. F. Shi et al., Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line, Cell. Mol. Life Sci., 67(22)(2010) 3915–3925, doi: 10.1007/s00018-010-0420-9.
[34] J. D. Sacks and M. V. Barbolina., Expression and function of CD44 in epithelial ovarian carcinoma, Biomolecules, 5(4)(2015) 3051–3066, doi: 10.3390/biom5043051.
[35] Y. Yan, X. Zuo, and D. Wei., Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target, Stem Cells Transl. Med., 4(9)(2015) 1033– 1043, doi: 10.5966/sctm.2015-0048.
[36] T. Strobel, L. Swanson, and S. A. Cannistra., In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: A novel role for CD44 in the process of peritoneal implantation, Cancer Res., 57(7)(1997) 1228–1232.
[37] G. Yin et al., TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214, Oncogene, 29(24)(2010) 3545–3553, doi: 10.1038/onc.2010.111.
[38] K. D. Steffensen et al., Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer, J. Oncol., (2011), doi: 10.1155/2011/620523.
[39] B. M. Foster, D. Zaidi, T. R. Young, M. E. Mobley, and B. A. Kerr., CD117/c-kit in cancer stem cell-mediated progression and therapeutic resistance, Biomedicines, 6(1)(2018) 1–19, doi: 10.3390/biomedicines6010031.
[40] B. Yang, X. Yan, L. Liu, C. Jiang, and S. Hou., Overexpression of the cancer stem cell marker CD117 predicts poor prognosis in epithelial ovarian cancer patients: Evidence from meta-analysis, Onco. Targets. Ther., 10(2017) 2951–2961, doi: 10.2147/OTT.S136549.
[41] K. Nakamura et al., CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymaltransition in ovarian cancer via both the Akt and ERK pathways, Oncol. Rep., 37(6)(2017) 3189–3200, doi: 10.3892/or.2017.5583.
[42] I. Kryczek et al., Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells, Int. J. Cancer, 130(1)(2012) 29–39, doi: 10.1002/ijc.25967.
[43] P. Marcato, C. A. Dean, C. A. Giacomantonio, and P. W. K. Lee., Aldehyde dehydrogenase its role as a cancer stem cell marker comes down to the specific isoform, Cell Cycle, 10(9)(2011) 1378–1384, doi: 10.4161/cc.10.9.15486.
[44] M. Rodriguez-Torres and A. L. Allan., Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors, Clin. Exp. Metastasis, 33(1)(2016) 97–113, doi: 10.1007/s10585- 015-9755-9.
[45] M. Roemer, Emily J., West, Kesley L., Northrup, Jessica B., Iverson, Jana, “乳鼠心肌提取 HHS Public Access., Physiol. Behav., 176(12)(2016) 139–148, doi: 10.1038/onc.2014.178.BetaCatenin.
[46] A. D. Steg et al., Targeting the Notch ligand jagged1 in both tumor cells and stroma in ovarian cancer, Clin. Cancer Res., 17(17)(2011) 5674–5685, doi: 10.1158/1078-0432.CCR-11-0432.
[47] 2 Amrita M. Nargund1,†, Mark W. Pellegrino1,†, Christopher J. Fiorese1, 2, Brooke M. Baker1, and Cole M. Haynes1, “基因的改变NIH Public Access., Bone, 23(1)(2011) 1–7, doi: 10.1158/1535-7163.MCT-10-0563.Targeting.
[48] M. Roy, J. Connor, A. Al-Niaimi, S. L. Rose, and A. Mahajan., Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by immunohistochemistry is associated with chemo-refractoriness in patients with high-grade ovarian serous carcinoma., Hum. Pathol., 73(1–6)(2018), doi: 10.1016/j.humpath.2017.06.025.
[49] I. A. Silva et al.,Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival, Cancer Res., 71(11)(2011) 3991–4001, doi: 10.1158/0008-5472.CAN-10-3175.
[50] J. J. Duan et al., Strategies for isolating and enriching cancer stem cells: Well begun is half done, Stem Cells Dev., 22(16)(2013) 2221–2239, doi: 10.1089/scd.2012.0613.
[51] M. Moghbeli, F. Moghbeli, M. M. Forghanifard, and M. R. Abbaszadegan., Cancer stem cell detection and isolation, Med. Oncol., 31(9)(2014) 1–7 doi: 10.1007/s12032-014-0069-6.
[52] B. A. Sutermaster and E. M. Darling, Considerations for highyield, high-throughput cell enrichment: fluorescence versus magnetic sorting, Sci. Rep., 9(1)(1–9) (2019) doi: 10.1038/s41598-018-36698-1.
[53] M. Mehrazma, Z. Madjd, E. Kalantari, M. Panahi, A. Hendi, and A. Shariftabrizi, Expression of stem cell markers, CD133 and CD44, in pediatric solid tumors: A study using tissue microarray, Fetal Pediatr. Pathol., 32(3)(2013) 192–204, doi: 10.3109/15513815.2012.701266.
[54] R. Foster, R. J. Buckanovich, and B. R. Rueda., Ovarian cancer stem cells: Working towards the root of stemness, Cancer Lett., 338(1)(2013) 147–157, doi: 10.1016/j.canlet.2012.10.023. 
[55] K. Garson and B. C. Vanderhyden., Epithelial ovarian cancer stem cells: Underlying complexity of a simple paradigm, Reproduction, 149(2)(2015) R59–R70, doi: 10.1530/REP-14-0234.
[56] V. Shah, O. Taratula, O. B. Garbuzenko, O. R. Taratula, L. Rodriguez-Rodriguez, and T. Minko, Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: An optimal delivery of siRNA and anticancer drug, Clin. Cancer Res., 19(22)(2013) 6193–6204, doi: 10.1158/1078-0432.CCR-13-1536.
[57] L. Cao, M. Shao, J. Schilder, T. Guise, K. S. Mohammad, and D. Matei., Tissue transglutaminase links TGF-Β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer, Oncogene, 31(20)(2012) 2521–2534, doi: 10.1038/onc.2011.429.
[58] A. B. Alvero et al., Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemoresistance, Cell Cycle, 8(1)(2009) 158–166, doi: 10.4161/cc.8.1.7533.
[59] A. B. Alvero et al., Stem-like ovarian cancer cells can serve as tumor vascular progenitors, Stem Cells, 27(10)(2009) 2405–2413, doi: 10.1002/stem.191.
[60] X. Wei et al., Müllerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics, Proc. Natl. Acad. Sci. U. S. A., 107(44)(2010) 18874–18879,doi: 10.1073/pnas.1012667107.
[61] E. Meng et al., CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival, Clin. Exp. Metastasis, 29(8)(2012) 939–948, doi: 10.1007/s10585-012-9482- 4.
[62] M. D. Curley et al., CD133 expression defines a tumor initiating cell population in primary human ovarian cancer, Stem Cells, 27(12)(2009) 2875–2883, doi: 10.1002/stem.236.
[63] J. Zhang, B. Yuan, H. Zhang, and H. Li., Human epithelial ovarian cancer cells expressing cd105, cd44 and cd106 surface markers exhibit increased invasive capacity and drug resistance, Oncol. Lett., 17(6)(2019) 5351–5360, doi: 10.3892/ol.2019.10221.
[64] X. Zheng, G. Shen, X. Yang, and W. Liu, Most C6 cells are cancer stem cells: Evidence from clonal and population analyses, Cancer Res., 67(8)(2007) 3691–3697, doi: 10.1158/0008-5472.CAN-06- 3912.
[65] X. Meng, M. Li, X. Wang, Y. Wang, and D. Ma., Both CD133+ and CD133- subpopulations of A549 and H446 cells contain cancer-initiating cells., Cancer Sci., 100(6)(2009) 1040–1046, doi: 10.1111/j.1349-7006.2009.01144.x.
[66] M. Gassenmaier et al., CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis., Stem Cells, 31(8)(2013) 1467–1476, doi: 10.1002/stem.1407.
[67] M. I. Khan, A. M. Czarnecka, I. Helbrecht, E. Bartnik, F. Lian, and C. Szczylik,Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells, Stem Cell Res. Ther., 6(1)(2015) 1–11, doi: 10.1186/s13287-015-0177-z.
[68] T. N. Almanaa, M. E. Geusz, and R. J. Jamasbi., A New Method for Identifying Stem-Like Cells in Esophageal Cancer Cell Lines., J. Cancer, 4(7) (2013), 536–548, doi: 10.7150/jca.6477.
[69] D. Kim, B. hyun Choi, I. geun Ryoo, and M. K. Kwak., High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling, Cell Death Dis., 9(9)(2018), doi: 10.1038/s41419-018-0903-4. [70] T. Kuroda et al., ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis, PLoS One, 8(6)(2013), doi: 10.1371/journal.pone.0065158.
[71] J. Song, I. Chang, Z. Chen, M. Kang, and C. Y. Wang., Characterization of side populations in HNSCC: Highly invasive, chemoresistant and abnormal Wnt signaling, PLoS One, 5(7)(2010) 1–9, doi: 10.1371/journal.pone.0011456.
[72] M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan., Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo, J. Exp. Med., 183(4)(1996) 1797–1806, doi: 10.1084/jem.183.4.1797.
[73] M. Nakatsugawa et al., SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity, Lab. Investig., 91(12) (2011) 1796–1804, doi: 10.1038/labinvest.2011.140.
[74] K. J. Gangavarpu and W. J. Huss., Isolation and applications of prostate side population cells based on dye cycle violet efflux, Curr. Protoc. Toxicol., no. SUPPL.47(2011) 1–18, doi: 10.1002/0471140856.tx2202s47.
[75] Z. Ruan, J. Liu, and Y. Kuang., Isolation and characterization of side population cells from the human ovarian cancer cell line SKOV-3, Exp. Ther. Med., 10(6)(2015) 2071–2078, doi: 10.3892/etm.2015.2836.
[76] G. Dontu et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells,” Genes Dev., 17(10)(2003) 1253–1270, doi: 10.1101/gad.1061803.
[77] K. Abiko et al., PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction, Clin. Cancer Res., 19(6)(2013) 1363–1374, doi: 10.1158/1078-0432.CCR-12-2199.
[78] M. Boesch et al., Heterogeneity of Cancer Stem Cells: Rationale for Targeting the Stem Cell Niche, Biochim. Biophys. Acta - Rev. Cancer, 1866(2) (2016) 276–289, doi: 10.1016/j.bbcan.2016.10.003.
[79] C. J. Chang et al., P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs, Nat. Cell Biol., 13(3), (2011) 317–323, doi: 10.1038/ncb2173.
[80] M. M. Nava, M. T. Raimondi, and R. Pietrabissa, ., Controlling self-renewal and differentiation of stem cells via mechanical cues, J. Biomed. Biotechnol., (2012) doi: 10.1155/2012/797410.
[81] J. Panyam., Cancer stem cells, Drug Deliv. Transl. Res., 3(2)(2013), 111–112, doi: 10.1007/s13346-013-0138-y.
[82] H. Kitamura, K. Okudela, T. Yazawa,
H. Sato, and H. Shimoyamada., Cancer stem cell: Implications in cancer biology and therapy with special reference to lung cancer, Lung Cancer, 66(3)(2009) 275–281, doi: 10.1016/j.lungcan.2009.07.019.
[83] P. Valent et al., Cancer stem cell definitions and terminology: The devil is in the details, Nat. Rev. Cancer, 12(11)(2012) 767–775, doi: 10.1038/nrc3368.
[84] L. T. H. Phi et al., Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment, Stem Cells Int.,(2018), doi: 10.1155/2018/5416923.
[85] P. P. Liu et al., Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway, Cell Death Differ., 21(1)(2014) 124–135, doi: 10.1038/cdd.2013.131.
[86] R. Palorini et al., Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS, J. Cell. Biochem., 115(2)(2014) 368–379, doi: 10.1002/jcb.24671.
[87] A. Deshmukh, K. Deshpande, F. Arfuso, P. Newsholme, and A. Dharmarajan., Cancer stem cell metabolism: A potential target for cancer therapy, Mol. Cancer, 15(1)(2016) 1–10, doi: 10.1186/s12943-016-0555-x.
[88] J. Liao et al., Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism, PLoS One, vol. 9, no. 1(2014) 1–13, doi: 10.1371/journal.pone.0084941.
[89] A. Pastò et al., Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation, Oncotarget, 5(12)(2014) 4305–4319, doi: 10.18632/oncotarget., 2010.
[90] L. N. Abdullah and E. K. Chow, Mechanisms of chemoresistance in cancer stem cells, Clin. Transl. Med., 2(1)(2013) 1–9, doi: 10.1186/2001-1326-2-3. [91] E. K. H. Chow, L. L. Fan, X. Chen, and J. M. Bishop., Oncogenespecific formation of chemoresistant murine hepatic cancer stem cells, Hepatology, 56(4)(2012) 1331–1341, doi: 10.1002/hep.25776.
[92] A. B. Shapiro, A. B. Corder, and V. Ling., P-glycoproteinmediated Hoechst 33342 transport out of the lipid bilayer, Eur. J. Biochem., 250(1)(1997) 115–121, doi: 10.1111/j.1432- 1033.1997.00115.x.
[93] C. W. Scharenberg, M. A. Harkey, and B. Torok-Storb,The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors, Blood, 99(2)(2002) 507–512, doi: 10.1182/blood.V99.2.507.
[94] P. P. Szotek et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness, Proc. Natl. Acad. Sci. U. S. A., 103(30)(2006) 11154–11159, doi: 10.1073/pnas.0603672103.
[95] T. Litman et al., The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2)., J. Cell Sci., 113(11) (2000) 2011–2021, doi: 10.1242/jcs.113.11.2011.
[96] S. Chuthapisith, J. Eremin, M. El-Sheemey, and O. Eremin, “Breast cancer chemoresistance: Emerging importance of cancer stem cells, Surg. Oncol., 19(1)(2010) 27–32, doi: 10.1016/j.suronc.2009.01.004.
[97] R. Eyre et al., Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the abcb1 expressing side population, Tumor Biol., 35(10) (2014) 9879–9892, doi: 10.1007/s13277-014-2277-2.
[98] L. Hu, C. McArthur, and R. B. Jaffe., Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant, Br. J. Cancer, 102(8)(2010) 1276–1283, doi: 10.1038/sj.bjc.6605626.
[99] D. K. Kim et al., Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells, Exp. Mol. Med., 48(8)(2016) doi: 10.1038/emm.2016.73.
[100] W. S. Dalton et al., A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A southwest oncology group study, Cancer, 75(3)(1995) 815–820, doi: 10.1002/1097- 0142(19950201)75:3<815::AID-CNCR2820750311>3.0.CO;2-R.
[101] N. E. Sládek., Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact, J. Biochem. Mol. Toxicol., vol. 17(1)(2003) 7–23, doi: 10.1002/jbt.10057.
[102] J. Liu et al.,Lung cancer tumorigenicity and drug resistance are maintained through ALDHhiCD44hi tumor initiating cells, Oncotarget, 4(10)(2013) 1698–1711, doi: 10.18632/oncotarget.1246.
[103] X. Li et al., Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy, J. Natl. Cancer Inst., 100(9)(2008) 672–679, doi: 10.1093/jnci/djn123.
[104] Z. A. Rasheed et al., Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma, J. Natl. Cancer Inst., 102(5)(2010) 340–351, doi: 10.1093/jnci/djp535.
[105] A. Lugli et al., Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer, Br. J. Cancer, 103(3)(2010) 382– 390, doi: 10.1038/sj.bjc.6605762.
[106] X. Liu, Z. Chen, T. Lan, P. Liang, and Q. Tao., Upregulation of interleukin-8 and activin A induces osteoclastogenesis in ameloblastoma, Int. J. Mol. Med., 43(6)(2019) 2329–2340, doi: 10.3892/ijmm.2019.4171.
[107] J. C. Patton, G. G. Sherman, A. H. Coovadia, W. S. Stevens, and T. M. Meyers., Ultrasensitive human immunodeficiency virus type 1 p24 antigen assay modified for use on dried whole-blood spots as a reliable, affordable test for infant diagnosis, Clin. Vaccine Immunol.,13(1)(2006) 152–155, doi: 10.1128/CVI.13.1.152- 155.2006.
[108] Y. Li, T. Chen, J. Zhu, H. Zhang, H. Jiang, and H. Sun, High ALDH activity defines ovarian cancer stem-like cells with enhanced invasiveness and EMT progress which are responsible for tumor invasion, Biochem. Biophys. Res. Commun., 495(1)(2018) 1081–1088, doi: 10.1016/j.bbrc.2017.11.117.
[109] S. J. Dylla et al., Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy, PLoS One, 3(6)(2008), doi: 10.1371/journal.pone.0002428.
[110] J. T. Opferman and A. Kothari., Anti-apoptotic BCL-2 family members in development, Cell Death Differ., 25(1)(2018) 37–45, doi: 10.1038/cdd.2017.170.
[111] L. Pegoraro et al., from an acute B-cell leukemia, 81(1984) 7166– 7170.
[112] W. B. Graninger, M. Seto, B. Boutain, P. Goldman, and S. J. Korsmeyer., Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells, J. Clin. Invest., 80(5)(1987) 1512– 1515, doi: 10.1172/JCI113235.
[113] Z. Madjd, A. Z. Mehrjerdi, A. M. Sharifi, S. Molanaei, S. Z. Shahzadi, and M. Asadi-Lari., CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours, Cancer Immun., 9(2009) 1–7.
[114] M. Konopleva et al., The anti-apoptotic genes Bcl-XL and Bcl-2 are over-expressed and contribute to chemoresistance of nonproliferating leukaemic CD34+ cells, Br. J. Haematol., 118(2)(2002) 521–534, doi: 10.1046/j.1365-2141.2002.03637.x.
[115] J. Williams et al., Expression of Bcl-xL in ovarian carcinoma isassociated with chemoresistance and recurrent disease, Gynecol. Oncol., 96(2)(2005) 287–295, doi: 10.1016/j.ygyno.2004.10.026.
[116] M. Wong et al., Navitoclax (ABT-263) reduces Bcl-x L-mediated chemoresistance in ovarian cancer models,Mol. Cancer Ther., 11(4)(2012) 1026–1035, doi: 10.1158/1535-7163.MCT-11-0693.
[117] J. Witham et al., The Bcl-2/Bcl-XL family inhibitor ABT-737 sensitizes ovarian cancer cells to carboplatin, Clin. Cancer Res., 13(23)(2007),7191–7198, doi: 10.1158/1078-0432.CCR-07-0362.
[118] T. Reya et al., A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature, 423(6938)(2003) 409–414, doi: 10.1038/nature01593. [119] C. Zhao et al., Loss of β-Catenin Impairs the Renewal of Normal and CML Stem Cells In Vivo., Cancer Cell, 12(6)(2007) 528–541, doi: 10.1016/j.ccr.2007.11.003.
[120] I. Bisson and D. M. Prowse., WNT signaling regulates selfrenewal and differentiation of prostate cancer cells with stem cell characteristics, Cell Res., 19(6)(2009) 683–697, doi: 10.1038/cr.2009.43.
[121] Y. Capodanno, F. O. Buishand, L. Y. Pang, J. Kirpensteijn, J. A. Mol, and D. J. Argyle., Notch pathway inhibition targets chemoresistant insulinoma cancer stem cells, Endocr. Relat. Cancer, 25(2)(2018) 131–144, doi: 10.1530/ERC-17-0415.
[122] M. R. Abbaszadegan, A. Riahi, M. M. Forghanifard, and M. Moghbeli., WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma, Cell. Mol. Biol. Lett., 23(1)(2018) 1–9, doi: 10.1186/s11658-018-0109-x.
[123] W. Yang et al., Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells, Cancer Res., 68(11)(2008) 4287–4295, doi: 10.1158/0008-5472.CAN-07-6691.
[124] P. Ranganathan, K. L. Weaver, and A. J. Capobianco, Notch signalling in solid tumours: A little bit of everything but not all the time, Nat. Rev. Cancer, 11(5)(2011) 338–351, doi: 10.1038/nrc3035.
[125] M. Moghbeli, H. Mosannen Mozaffari, B. Memar, M. M. Forghanifard, M. Gholamin, and M. R. Abbaszadegan., Role of MAML1 in targeted therapy against the esophageal cancer stem cells, J. Transl. Med., 17(1)(2019) 1–12, doi: 10.1186/s12967- 019-1876-5.
[126] M. Moghbeli, A. Sadrizadeh, M. M. Forghanifard, H. M. Mozaffari, E. Golmakani, and M. R. Abbaszadegan, Role of Msi1 and PYGO2 in esophageal squamous cell carcinoma depth of invasion, J. Cell Commun. Signal., 10(1)(2016) 49–53, doi: 10.1007/s12079-015-0314-6.
[127] M. R. Abbaszadegan and M. Moghbeli., Role of MAML1 and MEIS1 in Esophageal Squamous Cell Carcinoma Depth of Invasion, Pathol. Oncol. Res., 24(2)(2018) 245–250, doi: 10.1007/s12253-017-0243-1.
[128] R. D. Meng et al., γ-secretase inhibitors abrogate oxaliplatininduced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity, Cancer Res., 69(2) (2009) 573–582, doi: 10.1158/0008-5472.CAN-08-2088.
[129] S. M. McAuliffe et al., Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy, Proc. Natl. Acad. Sci. U. S. A., 109(43)(2012) doi: 10.1073/pnas.1206400109.
[130] C. L. W. Haygood., Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival?, World J. Stem Cells, 6(4)(2014) 441, doi: 10.4252/wjsc.v6.i4.441.
[131] Q. R. Yu., Stem cells and cancer stem cells, J. Clin. Rehabil. Tissue Eng. Res., 11(15)(2007) 2948–2951, doi: 10.5892/intech.csc.2011.0328.
[132] Y. Komiya and R. Habas., Wnt signal transduction pathways, Organogenesis, 4(2)(2008) 68–75, doi: 10.4161/org.4.2.5851.
[133] B. T. MacDonald, K. Tamai, and X. He., Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases, Dev. Cell, 17(1)(2009) 9–26, doi: 10.1016/j.devcel.2009.06.016.
[134] S. S. Zhang, Z. W. Huang, L. X. Li, J. J. Fu, and B. Xiao., Identification of CD200+ colorectal cancer stem cells and their gene expression profile, Oncol. Rep., 36(4)(2016) 2252–2260, doi: 10.3892/or.2016.5039.
[135] R. C. Arend, A. I. Londoño-Joshi, J. M. Straughn, and D. J. Buchsbaum., The Wnt/β-catenin pathway in ovarian cancer: A review, Gynecol. Oncol., 131(3)(2013) 772–779, doi: 10.1016/j.ygyno.2013.09.034.
[136] A. J. Schindler, A. Watanabe, and S. B. Howell., LGR5 and LGR6 in stem cell biology and ovarian cancer, Oncotarget, 9(1)(2018) 1346–1355, doi: 10.18632/oncotarget.20178.
[137] X. Zhang and J. Hao., Development of anticancer agents targeting the wnt/β-catenin signaling, Am. J. Cancer Res., 5(8)(2015) 2344– 2360.
[138] K. H. Emami et al., A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription, Proc. Natl. Acad. Sci. U. S. A., 101(34)(2004) 12682–12687, doi: 10.1073/pnas.0404875101.
[139] M. Varjosalo and J. Taipale., Hedgehog: Functions and mechanisms, Genes Dev., 22(18)(2008) 2454–2472,doi: 10.1101/gad.1693608.
[140] C. Zhao et al., Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia, Nature, 458(7239)(2009) 776–779, doi: 10.1038/nature07737.
[141] A. A. Merchant and W. Matsui., Targeting Hedgehog - A cancer stem cell pathway, Clin. Cancer Res., 16(12)(2010) 3130–3140, doi: 10.1158/1078-0432.CCR-09-2846.
[142] V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, and A. Ruiz i Altaba., HEDGEHOG-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity, Curr. Biol., 17(2)(2007) 165–172, doi: 10.1016/j.cub.2006.11.033.
[143] E. E. Bar et al., Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma, Stem Cells, 25(10)(2007) 2524–2533, doi: 10.1634/stemcells.2007- 0166.
[144] V. Justilien, M. P. Walsh, S. A. Ali, E. A. Thompson, N. R. Murray, and A. P. Fields., The PRKCI and SOX2 Oncogenes Are Coamplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma, Cancer Cell, 25(2)(2014) 139– 151, doi: 10.1016/j.ccr.2014.01.008.
[145] C. Dierks et al., Expansion of Bcr-Abl-Positive Leukemic Stem Cells Is Dependent on Hedgehog Pathway Activation, Cancer Cell, 14(3)(2008) 238–249,doi: 10.1016/j.ccr.2008.08.003.
[146] C. D. Peacock et al., Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma, Proc. Natl. Acad. Sci. U. S. A., 104(10)(2007) 4048–4053, doi: 10.1073/pnas.0611682104.
[147] D. D. Von Hoff et al., Inhibition of the Hedgehog Pathway in Advanced Basal-Cell Carcinoma, N. Engl. J. Med., 361(12)(2009) 1164–1172, doi: 10.1056/nejmoa0905360.
[148] A. Sekulic et al., Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma, N. Engl. J. Med., 366(23)(2012) 2171– 2179, doi: 10.1056/nejmoa1113713.
[149] A. Ray, E. Meng, E. Reed, L. A. Shevde, and R. P. Rocconi., Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells, Int. J. Oncol., 39(4)(2011) 797– 804, doi: 10.3892/ijo.2011.1093.
[150] H. Q. Doan, S. Silapunt, and M. R. Migden., Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma, Onco. Targets. Ther., 9(2016) 5671–5678, doi: 10.2147/OTT.S108171.
[151] J. Ericson, S. Morton, A. Kawakami, H. Roelink, and T. M. Jessell., Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity,Cell, 87(4)(1996) 661–673, doi: 10.1016/S0092-8674(00)81386-0.
[152] I. Bosanac et al., The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling, Nat. Struct. Mol. Biol., 16(7)(2009) 691–697, doi: 10.1038/nsmb.1632.
[153] S. Artavanis-Tsakonas, M. D. Rand, and R. J. Lake., Notch signaling: Cell fate control and signal integration in development, Science 284(80)., 5415, 770–776, (1999), doi: 10.1126/science.284.5415.770.
[154] M. Moghbeli, M. R. Abbaszadegan, E. Golmakani, and M. M. Forghanifard., Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma, J. Cell Commun. Signal., 10(2)(2016) 129–135,doi: 10.1007/s12079-016-0320-3.
[155] R. Barnawi et al.,Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway, Stem Cells, 34(12)(2016) 2799– 2813, doi: 10.1002/stem.2473.
[156] E. V. Abel et al., The notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer, PLoS One, 9(3)(2014) doi: 10.1371/journal.pone.0091983.
[157] S. Pant et al., A first-in-human phase i study of the oral Notch inhibitor, LY900009, in patients with advanced cancer, Eur. J. Cancer, 56(2016) 1–9, doi: 10.1016/j.ejca.2015.11.021.
[158] J. Huang et al., Dll4 Inhibition plus Aflibercept markedly reduces ovarian tumor growth, Mol. Cancer Ther., 15(6)(2016) 1344– 1352, doi: 10.1158/1535-7163.MCT-15-0144.
[159] J. A. R. Jonathan Posner and Bradley S. Peterson., 基因的改变NIH Public Access, Bone, 23(1)(2008) 1–7. doi: 10.1158/1078-0432.CCR-11-3250.Metronomic.
[160] S. D. Li and S. B. Howell., CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases, Mol. Pharm., 7(1)(2010) 280–290 doi: 10.1021/mp900242f.
[161] A. P. N. Skubitz et al., Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression, Gynecol. Oncol., 130(3)(2013) 579–587, doi: 10.1016/j.ygyno.2013.05.027.
[162] D. Su et al., Targeting CD24 for treatment of ovarian cancer by short hairpin RNA, Cytotherapy, 11(5) (2009) 642–652,doi: 10.1080/14653240902878308.
[163] M. R. Raspollini, G. Amunni, A. Villanucci, G. Baroni, A. Taddei, and G. L. Taddei., c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: An immunocytochemical study, Ann. Oncol., 15(4) (2004) 594–597, doi: 10.1093/annonc/mdh139.
[164] W. K. Chau, C. K. Ip, A. S. C. Mak, H. C. Lai, and A. S. T. Wong., C-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/βcatenin-ATP-binding cassette G2 signaling, Oncogene, 32(22)(2013) 2767–2781, 2013, doi: 10.1038/onc.2012.290.
[165] R. J. Schilder et al., Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: A gynecologic oncology group study., J. Clin. Oncol., 26(20)(2008) 3418–3425, doi: 10.1200/JCO.2007.14.3420.
[166] H. Chung et al., The effect of salinomycin on ovarian cancer stemlike cells., Obstet. Gynecol. Sci., 59(4)(2016) 261, doi: 10.5468/ogs.2016.59.4.261. [167]M. G. T. and J. F. S. Wager., 基因的改变NIH Public Access, Bone, 23(1)(2011) 1–7,doi: 10.1016/j.ygyno.2012.07.115.Metformin.
[168] F. Casagrande et al., Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of clostridium perfringens enterotoxin, Cancer, 117(24)(2011) 5519–5528, doi: 10.1002/cncr.26215.