Metagenomics of Bio Slurry Obtained From A Biogas Plant Using Next-Generation Dna Sequencing

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2019 by IJBTT Journal
Volume - 9 Issue - 3                         
Year of Publication : 2019
Authors : Akubuenyi F.C, Odokuma, L.O., Nwaokorie, F.O.
DOI :  10.14445/22490183/IJBTT-V9I3P603

Citation

MLA Style:Akubuenyi F.C, Odokuma, L.O., Nwaokorie, F.O. "Metagenomics of Bio Slurry Obtained From A Biogas Plant Using Next-Generation Dna Sequencing" International Journal of Biotech Trends and Technology 9.2 (2019): 12-17.

APA Style:Akubuenyi F.C, Odokuma, L.O., Nwaokorie, F.O.(2019). Metagenomics of Bio Slurry Obtained From A Biogas Plant Using Next-Generation Dna Sequencing. International Journal of Biotech Trends and Technology, 9(2), 12-17.

Abstract

Metagenomics of bioslurry obtained from biogas plant was carried out Next-Generation DNA sequencing. The DNA of the associated bacterial organisms was extracted using a ZYMO Research DNA extraction kit (Quick-gDNATMMiniPrep). They were sequenced by Next Generation Sequencing Technique to determine the nucleotide sequence of all microorganisms present in the sample using automated PCR cycle- Genome Sequencer™ FLX System from 454 Life Sciences™ and Roche Applied.Sequence analysis and alignment was performed using Vecton NTI suite 9 (InforMax, Inc.). The partial 16S rRNA gene sequences generated and subjected to BLAST analysis, and compared to GenBank database of the National Center for Biotechnology Information revealed the presence of Clostridium thermocellum, Clostridium tetani, Spirochaeta caldaria, Acinetobacterbaumanni, Stenotrophomonasmaltophilic, Prevotellaruminocola, Parabacteriumdistasonics, Clostridium cellulovorans, Mahellaaustraliensis, Ethanoligenensharbinense, Odoribactersplanchnicus, Tannerallaforsythis, Clostridium stercorarium, Gramellaforsetti, GeobacillusthermoleovoransHalibacteriummodesticaldum and Veillonellaparvula, as the bacteria involved in biogas production. This implies that biogas production is mediated by these species of anaerobic bacteria.

References

[1] M.J. Fullwood, C.L. Wei, E.T. Liu, and Y. Ruan, Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res, vol. 19, pp. 521–32, 2009.
[2] Y. Yang, B. Xie and Y. Jan, Application of Next-generation Sequencing Technology in Forensic Science. Genomic Proteomics Bioinformatics, vol. 12, pp. 190–197, 2014.
[3] J. Weber-Lehmann, E. Schilling, G. Gradl, D.C. Richter, J. Wiehler and B. Rolf, Finding the needle in the haystack: differentiating ‘‘identical’’ twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic SciInt Genet, vol. 9, no. 42–6, 2014.
[4] J.J. McCarthy, H.L. McLeod and G.S. Ginsburg, Genomic medicine: a decade of successes, challenges, and opportunities. SciTransl Med, vol. 5, no. 189sr4, 2013.
[5] M.E. Goddard, and B.J. Hayes, Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet, vol. 10, pp. 381–91, 2009.
[6] H.N. Poinar, C. Schwarz, J. Qi, B. Shapiro, R.D. Macphee and B. BuiguesMetagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, vol. 311, pp. 392–4, 2006.
[7] T. Thomas, J. Gilbert, and F. Meyer, "Metagenomics - A guide from sampling to data analysis". Microbial Informatics and Experimentation, vol. 2, no. 1, pp. 3, 2012.
[8] J. Qin, R. Li and J. Raes, et al., "A human gut microbial gene catalogue established by metagenomic sequencing". Nature, vol. 464, no. 7285, pp. 59-65, 2009.
[9] L. Lynd, P. Weimer, W. van Zyl, and I. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, vol. 66 pp. 506–577, 2002
[10] E. Bayer, J. Belaich, Y. Shoham and R. Lamed, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology.vol. 58, pp. 521–54, 2004.
[11] D. Cirne, A., Lehtomaki, L. Bjornsson and L. Blackall, Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Journal of Applied Microbiology.vol 103 pp. 516–527, 2007.
[12] S. Jaenicke, C. Ander, T. Bekel, R. Bisdorf, M. Droge, K. Gartemann, S. Junemann, O. Kaiser, L. Krause, F. Tille, M. Zakrzewski, A. Puhler, A. Schluter, A. Goesmann, Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454- Pyrosequencing. Plosone, vol. 6, no. 1, pp. 1-15, 2011.
[13] H. Drake, K. Kusel and C. Matthies, Ecological consequences of the phylogenetic and physiological diversities of acetogens.Antonie Van Leeuwenhoek, vol. 81 pp. 203–213. 2002
[14] H. Shin and J. Youn, (2005).Conversion of food waste into hydrogen by thermophilicacidogenesis.Biodegradation. 16: 33–44.
[15] M. Myint, N. Nirmalakhandan and R. Speece, Anaerobic fermentation of cattle manure: Modeling of hydrolysis and acidogenesis. WaterResearch, vol. 41, pp. 323–332, 2007.
[16] D. Sousa, H. Smidt, M. Alves, and A. Stams, Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiology Ecology, vol. 68 pp. 257–272, 2009.
[17] U. Deppenmeier and V. Muller, Life close to the thermodynamic limit: how methanogenicarchaea conserve energy. Results and problems in cell differentiation, vol. 45, pp. 123–152, 2008.
[18] R. Thauer, A. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, Methanogenicarchaea: ecologically relevant differences in energy conservation. NatureReviewsMicrobiology, vol. 6, pp. 579–591, 2008.
[19] U. Deppenmeier, The unique biochemistry of methanogenesis. Progress in nucleic acid research and molecular biology, vol. 71, pp. 223–283, 2002.
[20] Y. Liu, and W. Whitman, Metabolic, phylogenetic, and ecological diversity of the methanogenicarchaea. Annals of the New York Academy of Sciences, vol. 1125 pp. 171–189 2008.
[21] L. Krause, N. Diaz, R. Edwards, K. Gartemann, H. Kromeke, et al., Taxonomic composition and gene content of a methane- producing microbial community isolated from a biogas reactor. Journal of Biotechnology, vol. 136, pp. 91–101, 2008.
[22] L. Leve´n, A. R. B. Eriksson and A.Schnurer,Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol.Ecol., vol. 59, pp.683–693; 2007.
[23] S. Dollhopf, S. Hashsham, F. Dazzo, R. Hickey, C. Criddle et al., The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions. Applied microbiology and biotechnology, Vol. 56, pp. 531–538, 2001.
[24] A. Fernandez, S. Hashsham, S. Dollhopf, L. Raskin, O. Glagoleva, et al., Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology.vol. 66 pp. 40-58, 2000.
[25] N. Diaz, M. Dondrup, R. Eichenlaub, K. Gartemann, I. Krahn, L. Krause, H. Kromeke, O. Kruse, J.H. Mussgnug H. Neuweger, K. Niehaus, A. Puhler, K.J. Runte, R. Szczepanowski, A. Tauch, A. Tilker and A. Goesmann, The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. Journal of Biotechnology, vol. 136 no., 1–2, pp. 77-90, 2008.
[26] S.H. Lee, H.J. Kang, Y.H. Lee, T.J. Lee, K. Han, Y. Choi and H.D. Park, Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit, vol. 14, pp. 1893–1905, 2012.
[27] Z. Zhang, S. Schwartz, L. Wagner and W. Miller, A greedy algorithm for aligning DNA sequences. J. ComputBiol, vol. 7, no. 1-2, pp. 203-214, 2000.
[28] S.Altschul, W. Gish, W. Miller, E. Myers and D.J. Lipman, Basic Local Alignment Search Tool.J.Mol.Biol.,vol. 215, no. 3, pp. 403-410, 1990.
[29] R. Wirth, E. Kovács, G. Moráti, Z. Bagi, G. Rákhely and K. Kovács, Classification of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol.Biofuels, vol 5, no.41, pp. 1-16, 2012.
[30] V.V Zverlov, J. Kellermann and W.H. Schwarz, Functional subgenomics of Clostridiumthermocellumcellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics, vol. 5, pp. 3646–3653, 2005.
[31] D.N. Gold and J.J.V. Martin, Global view of the Clostridiumthermocellumcellulosome revealed by quantitative proteomic analysis.J.Bacteriol, vol. 189 pp. 6787–6795. (2007).
[32] M. Kaji, Y. Taniguchi, O. Matsushita, S. Katayama, S. Miyata, S. Morita and A. Okabe, The hydA gene encoding the H2 evolving hydrogenase of Clostridiumperfingens: molecular characterization and expression of the gene. FEMS MicrobiolLett, vol. 181, pp. 329–336, 1999.
[33] E. Guedon, M. Desvaux, and H. Petitdemange, Improvement of cellulolytic properties of Clostridiumcellulolyticum by metabolic engineering. Appl Environ Microbiol, vol.68, pp. 53–58, 2002.
[34] C. Sundberg, W.A. Al-Soud, M. Larsson, E. Alm, S.S. Yekta, B.H. Svensson, S.J. Sørensen, and A. Karlsson, 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS MicrobiolEcol, vol. 85, pp. 612-626, 2013.
[35] M. Krober, T. Bekel, N. Diaz, A. Goesmann, S. Jaenicke, et al., Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454- pyrosequencing. Journal of Biotechnology, vol. 142 pp. 38–49, 2009.
[36] M.L. Fardeau, B. Olivier, J.L. Garcia, and B.K.C. Patel, Transfer of Thermobacteroidesleptospartumand Clostridium thermolacticumas Clostridium stercorariumsubsp. leptospartumsubsp. thermolacticumsubsp. nov., comb.nov.andC. stercorariumsubsp. thermolacticumsubsp. nov., comb. nov.Int. J. SystEvol. Microbiol, Vol. 51, pp. 1127–1131, 2001.
[37] V.V. Zverlov, W. Hiegl, D.E. Köck, J. Kellermann, T. Köllmeier, and W.H. Schwarz, Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass. Eng. Life Sci., vol. 10, pp. 528 –536,2010.
[38] J.A. Donaghy, K. Bronnenmeier, P.F. Soto-Kelly and A.M. McKay, Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J. Appl. Microbiol, vol. 88, pp. 458–466,2000.
[39] V.V. Zverlov, C. Hertel, K. Bronnenmeier, A. Hroch, J. Kellermann, and W.H. Schwarz, The thermostable alpha-L-rhamnosidaseRamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alfa-L-rhamnoside hydrolase, a new type of inverting glycosyl hydrolase. Mol. Microbiol, vol. 35, pp. 173–179,2000.
[40] V.V. Zverlov and W.H. Schwarz, Bacterial hydrolysis in anaerobic environmental subsystems—Clostridium thermocellumand Clostridium stercorarium, thermophilic plant-fiber degraders.Ann. N. Y. Acad. Sci., vol. 1125, pp.298–307,2008.
[41] F.C. Akubuenyi and S.A. Achor, The bacteriological index of bioslurry and the fate of pathogenic bacterial organisms during anaerobic digestion of domestic waste in a biogas plant.Microbiology Research Journal International.Vol. 25, pp. 1-9.
[42] W.D. Wang, Y.B. Song, Y.J. Wang, Y.M. Gao, R.Y. Jing, and Z.J. Cui, Biodiversity of mesophilic microbial community BYND 8 capability of lignocelluloses degradation and its effect on bigas production. Huan Jing KeXue, vol. 32, no. 1, pp. 253-8, 2011
[43] E.A. Assih, A.S. Ouattara, S. Thierry, J. Cayol, M. Labat and H. Macarie, Isolation of Stenotrophomonaspp from an upflow anaerobic sludge blanket (UASB) reactor. Intl. J. Sys. Evol.Microbiol, vol. 52, pp. 559-568, 2012.
[44] L. Yan, Y.Gao, Y. Wang, Q. Liu, Z. Sun, B. Fu, X. Wen, Z. Cui and W. Wang, Diversity of a mesophiliclignocellulolytic microbial consortium which is useful for enhancement of biogas production. Biores.Technol, vol. 111, pp. 49-54, 2012.
[45] M. Sakamoto and Y. Benno, Reclassification of Bacteroidesdistasionis,Bacteroidesgoldsteinii and Bacteroidesmerdae as Parabacteroidesdistasionis gen. nov.comb. nov.Parabacteroidesgoldsteinii comb.nov.andParabacteroidesmardae comb. nov.Int. J. Sys. Evolut.Microbiol.Vol. 56, pp. 1599–1605, 2006.
[46] F.C. Akubuenyi and S.A. Achor, The microbiological index of bioslurry and the fate of pathogenic bacterial organisms during anaerobic digestion of domestic waste in a biogas plant.Microbiology Research Journal International, vol. 25, pp. 1-9, 2018.
[47] S.G. Tringe, C. von Mering, and A. Kobayashi, et al., "Comparative metagenomics of microbial communities". Science, vol. 308, no. 5721, pp. 554–557, 2005.
[48] K.A. Weitz, S.A. Thorneloe, S.R Nishtala,S. Yarkosky and M. Zannes, The impact of municipal solid waste management on greenhouse gas emissions in the United States. J. Air Waste Manage. Assoc,vol.52 pp. 1000-1011, 2002

Keywords
Metagenomics, Bioslurry, Biogas plant, Next generation DNA sequencing