Isolation of bacteria producing cellulase from tilapia fish gut and media optimization for celluase production using Plackett Burman design

International Journal of Biotech Trends and Technology (IJBTT)
© 2017 by IJBTT Journal
Volume - 7 Issue - 2                         
Year of Publication : 2017
Authors : Sandeep Chovatiya; Snehal Ingle, Dipika Patel, Bhoomi Thakkar

Sandeep Chovatiya; Snehal Ingle, Dipika Patel, Bhoomi Thakkar "Isolation of bacteria producing cellulase from tilapia fish gut and media optimization for celluase production using Plackett Burman design", International Journal of Biotech Trends and Technology (IJBTT), V7(2): 13-18 Apr to Jun 2017, Published by Seventh Sense Research Group.


Cellulase production from bacteria can be an advantage as the enzyme production rate is normally higher due to the higher bacterial growth rate as compared to fungi. Screening of bacteria, optimisation of fermentation conditions and selection of substrates are important for the successful production of cellulase. This study is conducted to produce cellulase from tilapia fish gut bacteria, using Plackett Burman design and carboxymethyl cellulose (CMC) as substrate. The highest cellulase producing ability of isolate from this study was found to be 0.323 IU/ml with 24 hours of incubation. With the help of Plackett-Burman design, maximum cellulolytic activities was observed in high levels of CMC, Urea, Peptone, Calcium chloride, magnesium sulphate and Trace elements and Low levels of Ammonium sulphate, and Di Potassium Hydrogen phosphate, at 37 °C and pH 7.0 which is found to be optimized levels of components.


[1] M. Zaldivar, J. C. Velasquez, and L. M. Contreras – Perez, ―Trichoderma aureovi aureoviride, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation. Journal of Biotech., 4(3), 1 – 6, 2001.
[2] C. M. Wang, C. L. Shyu, and S. P. Ho, ―Characterization of a novel thermophilic cellulose degrading bacterium – Paenibacillus spp strain B39‖. Lett. Appl. Microbiol., 47: 46 – 53, 2008.
[3] K. L. Kalra, G. Kocher, and G. Banta, ―Optimization of cellulose production by submerged fermentation of rice straw by Trichoderma harzianum RUT-C. 8230‖. The Internet Journal of Microbiology, 5(2): 1 – 7, 2008.
[4] G. Coral, B. Arikan, and M. N. Unaldi, ―Some properties of crude carboxymet thyl cellulose of Aspergillus niger wild type strain‖. Turk J. Biol., 26, 209–213, 2002.
[5] C. H. Ko, W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu, ―Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technol., 14, 2727 – 2733, 2007.
[6] W. Li, W. W. Zhang, M. M. Yang, and Y. L. Chen, ―Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol. Biotechnol., 2: 195 – 201, 2008.
[7] K. Hirasawa, K. Uchimura, M. Kashima, W. D. Grant, S. Ito, T. Kobayashi, and K. Horikoshi, ―Salt activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leuwenhoek., 89 (2), 211 – 219, 2006.
[8] O. Perez-Avalos, L. M. Sanchez-Herrera, and T. Ponce- Noyola, ―A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in indusrial processes at different pH‖. Curr. Microbiol., 57 (1), 39 – 44, 2008.
[9] L. I. Pei-Jun, Z. De-Bing, Qui-xing and Z. Chun-gui, ―Optimization of solid fermentation of cellulose from Trichoderma koningii‖. L. Envron. Sci., 6, 816–820, 2004.
[10] G. Immanuel, R. Dhanusa, P. Prema, and A. Palavesa, ―Effects of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Envir. Sci. Techn., 3(1), 25 – 34, 2006.
[11] A. K. Ray, K. S. Bairagi, A. Ghosh, and S. K. Sen, ―Optimization of fermentation conditions for cellulose production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acat. Icht. Et. Pist., 37, 47– 53, 2007.
[12] H. R. Gohel, C. N. Contractor, S. K. Ghosh, and V. J. Braganza, ―A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates. Int. J. Curr. Microbiol. App. Sci., 3(5), 261-266, 2014.
[13] T. K. Ghose, "Measurement of cellulase activities." Pure Appl Chem., 59:257-268, 1987.
[14] M. Maki, K. T. Leung, and W. Quin, ―The prospect of cellulase producing bacteriafor bioconversion of lignocellulosic biomass. Int. J. Bio. Sci., 5, 500 – 516, 2009.
[15] R. H. Doi, ―Cellulase of mesophilic microbes: cellulosome and non–cellulosome producers. Ann. NY. Acad. Sci., 1125, 267 – 279, 2008.
[16] R. U. Sangbriba, C. J. Duan, and J. L. Tang, ―Isolation and characterization of mesophilic Bacillus species cellulase genes from black liquor. Bioresour. Technol., 14, 2727 – 2733, 2006.
[17] L. U. Wen – Jing, W. Hong – Tao, Y. Shi – Jian, W. Zhi – Chao, and N. Young Feng, ―Isolation and characterization of mesophilic cellulose – degrading bacteria from flower stalk vegetable waste composting system. J. Gener. Appl. Micro., 51(6), 353 – 360, 2005.
[18] E. A. Johnson, A. Madia, and A. L. Demain, ―Chemically defined minimal medium for the growth of the anaerobic cellulolytic thermophile – Clostridium thermocellum. Appl. Environ. Microbiol., 41, 1060 – 1062, 1981.
[19] Y. Shoham, R. Lamed, and E. A. Bayer, ―The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol., 7 (7), 275 – 281, 1999.
[20] B. O. Ejechi, 1991. Biodegradation of some Nigerian Timbers by fungi. Ph.D thesis. pp. 499.
[21] J. C. Okolo, ―Cellulose hydrolysis by partially purified enzymes of Paeciolmyces species. Nigerian J. of Micro., 18(2), 293 – 296, 2004.

Celluase, fish gut, tilapia, Plackett Burman design.