Diversity Analysis and Polymorphism Through RAPD Markers in Eucalyptus Tereticornis Sm

 
 
International Journal of Biotech Trends and Technology (IJBTT)
 
© 2021 by IJBTT Journal
Volume - 11 Issue - 3                          
Year of Publication : 2021
Authors : Shivani Dobhal, Ashok Kumar
DOI :  10.14445/22490183/IJBTT-V11I3P604

Citation

MLA Style:Shivani Dobhal, Ashok Kumar  "Diversity Analysis and Polymorphism Through RAPD Markers in Eucalyptus Tereticornis Sm" International Journal of Biotech Trends and Technology 11.3 (2021): 23-30.

APA Style:Shivani Dobhal, Ashok Kumar(2021). Diversity Analysis and Polymorphism Through RAPD Markers in Eucalyptus Tereticornis Sm. International Journal of Biotech Trends and Technology, 11(3), 23-30.

Abstract

The genetic diversity of 25 genotypes of Eucalyptus tereticornis Sm. was analyzed using randomly amplified polymorphic DNA (RAPD) with 10 decamer primers. The number of scorable bands for each primer varied from 6(OPA-2) to 14 (M-131), with an average of 10 bands per primer. A total of 96 distinct DNA fragments (bands) were amplified, of which 80 were polymorphic, with172 to 1353 base pairs. The number of amplified bands per genotype varied from 5 to 13 and percentage polymorphism, from 73% to 93% with an average of 83.32%. The mean polymorphic information content (PIC) of RAPD primers was 0.34 and ranged from 0.19 to 0.44. Although genotypes originating from a single provenance tended to fall into the same cluster, those from the same location were dispersed across different clusters.

References

[1] FAO, Food and Agriculture Organization of United Nations, Rome, Italy. Web. http://faostat.fao.org/default.aspx.,(2014).
[2] Ogbonnaya, C.I., Nwalozie, M.C. and Nwaigbo, L.C., Growth and wood properties of Gmelina arborea (Verbenaceae) seedlings grown under five soil moisture regimes. American journal of botany, 79(2) (1992) 128-132.
[3] Chezhian, P., Yasodha, R. and Ghosh, M., Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. New Forests, 40(1) (2010) 85-99.
[4] Jacobs, M.R., 1981. Eucalypts for planting Food and Agriculture Organization of the United Nations., 2(1981)
[5] Poltri, S.M., Zelener, N., Traverso, J.R., Gelid, P.A.N.D. and Hopp, H.E., 2003. Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiology, 23(9) (2003) 625-632.
[6] Ruas, P.M., Ruas, C.F., Rampim, L., Carvalho, V.P., Ruas, E.A. and Sera, T., Genetic relationship in Coffea species and parentage determination of interspecific hybrids using ISSR (Inter-Simple Sequence Repeat) markers. Genetics and molecular biology, 26 (2003) 319-327.
[7] Vierling, R.A. and Nguyen, H.T., 1992. Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theoretical and Applied Genetics, 84 (1992) (7-8) 835-838.
[8] Dos Santos, J.B., Nienhuis, J., Skroch, P., Tivang, J. and Slocum, M.K., Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theoretical and Applied Genetics, 87(8) (1994) 909-915.
[9] Parsons, B.J., Newbury, H.J., Jackson, M.T. and Ford-Lloyd, B.V., Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Molecular Breeding, 3(2) (1997) 115-125.
[10] Esselman, E.J., Jianqiang, L., Crawford, D.J., Windus, J.L. and Wolfe, A.D., Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Molecular Ecology, 8(3) (1999) 443-451.
[11] Chen, J.M., Gituru, W.R., Wang, Y.H. and Wang, Q.F., The extent of clonality and genetic diversity in the rare Caldesia Grandis (Alismataceae): comparative results for RAPD and ISSR markers. Aquatic Botany, 84(4) (2006) 301-307.
[12] Arif, M., Zaidi, N.W., Singh, Y.P., Haq, Q.M.R. and Singh, U.S., 2009. A comparative analysis of ISSR and RAPD markers for the study of genetic diversity in Shisham (Dalbergia sissoo). Plant Molecular Biology Reporter, 27(4) (2009) 488-495.
[13] Babu, K.N., Rajesh, M.K., Samsudeen, K., Minoo, D., Suraby, E.J., Anupama, K. and Ritto, P., Randomly amplified polymorphic DNA (RAPD) and derived techniques. In Molecular Plant Taxonomy (2014) 191-209. Humana Press, Totowa, NJ.
[14] Nishad, D., Singh, P. and Singh, S.K., Use of RAPD and ISSR Markers for Molecular Genetic Analysis of Eucalyptus tereticornis.
[15] Ginwal H S, Kumar P, Sharma V K, Mandal A K & Harwood, C E, Genetic variability and early growth performance of Eucalyptus tereticornis Sm. in provenance cum progeny trials in India, Silvae Genet, 53-4 (2004) 148-153.
[16] Cotterill, P.P. and Dean, C.A., Successful tree breeding with index selection. CSIRO, Division of Forestry and Forest Products., (1990).
[17] Kumar, A. and Luna, R. K., Conversion of first-generation clonal seed orchard to advance generation orchard for higher genetic gains in Dalbergia sissoo (Roxb.). Indian Forester, 133 (2) (2007) 80-89.
[18] Doyle, J. J. and Doyle, J. L., (1990). Isolation of plant DNA from fresh tissue. Focus,12 (1990) 13-15.
[19] Stange, C., Prehn, D. and Arce-Johnson, P., 1998. Isolation of Pinus radiata genomic DNA suitable for RAPD analysis. Plant Molecular Biology Reporter, 16(4) (1998) 366-366.
[20] Mosseler, A., Egger, K.N., and Hughes, G.A., Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers. Canadian Journal of Forest Research, 22(9) (1992) 1332-1337.
[21] Jaccard, P., Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44 (1908) 223-270.
[22] Roldan-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., and De Loose, M.A.F.L.P., AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular breeding, 6(2) (2000) 125-134.
[23] Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. and Graner, A., Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated, and elite barleys. Plant Science, 173(6) (2007) 638-649.
[24] Tatikonda, L., Wani, S.P., Kannan, S., Beerelli, N., Sreedevi, T.K., Hoisington, D.A., Devi, P., and Varshney, R.K., AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science, 176(4) (2009) 505-513.
[25] Prevost, A. and Wilkinson, M.J., A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98(1) (1999) 107-112.
[26] Sah, S.P., Sharma, C.K., Sehested, F. and Kavre, N., 2001. Possible role of the soil in the Sissoo forest (Dalbergia sissoo, Roxb.) decline in the Nepal terai. Developments In plant and Soil Sciences, 92 (2001) 930-931.
[27] Keil, M. and Griffin, A.R., 1994. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theoretical and Applied Genetics, 89(4) (1994) 442-450.

Keywords
Eucalyptus tereticornis, RAPD, genetic diversity, clustering