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Abstract  

          Cellulases are the largest class of industrial 

enzymes produced worldwide because of their 

potential applications in cotton processing, paper 

recycling, juice extraction, detergent formulation, 

animal feed additives and their established uses in 

agricultural biotechnology and bioenergy production. 

Though many attempts have happened in the past few 

decades attempting to enhance the production and 

activity of cellulases by non molecular approaches 

(like Optimization of fermentative conditions and 

strain improvements) which are understood to have 

limited range of applications; molecular approaches 

have proved to be the best solution for many 

limitations faced by the other Biotechnological 

methods. The present review is an attempt to depict 

the recent advancements in the molecular approaches 

used to enhance the production of Bacterial 

cellulases.  
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I. INTRODUCTION 
 

          Cellulose is the major component of plant 

biomass and the most abundant renewable natural 

resource in the biosphere with an estimated annual 

production of 4.0x107 tonnes [1]-[2]. Although 

cellulose is a linear homopolymer of repeated units of 

cellobiose, the β-1,4-glycosidic linkages make the 

crystalline structure with a few amorphous regions. 

Cellulases are the inducible bioactive enzymes 

produced by cellulolytic microbes during their growth 

on cellulosic materials[3].Cellulase transforms 

cellulose into glucose, which can be fermented to 

ethanol [4]-[6]. Although several chemical and 

biochemical methods have been successfully 

employed to convert cellulosic waste materials into 

useful products, the enzymatic hydrolysis is the most 

preferred method [7].  
         
     Molecular approaches for the modification of 

cellulase made wide application in the field of protein 

engineering and inturn in the activity of cellulase 

enzyme a successful computational design to convert  

 

 

non-active ribose binding protein to triose phosphate 

isomerase was based on 18–22 mutations and 

exhibited a 105–106-fold activity enhancement [8]. 
 

II. MOLECULAR APPROACHES 
 

        As no single enzyme is completely suitable as it 

is, for the hydrolysis of cellulose in the biorefining 

industry, improving cellulases could help to achieve 

the cost-effective biofuel production. Protein 

engineering or molecular approach through the 

mutagenesis of catalytic domain aminoacid is the 

main method for cellulase improvement. The two 

major strategies for the improvement of a cellulases 

are rational design and directed evolution. Tables 1 

and 2 contain a list of different methods used to alter 

the properties of various cellulolytic bacterial strains 

by rational design and directed evolution respectively. 

III. RATIONAL DESIGN 

Rational design involves choice of a suitable enzyme, 

identification of the amino acid sites to be changed 

(structure based molecular modeling), site directed 

mutagenesis, transformation, expression and 

characterization of the mutants (Table 1). Recently, a 

successful computational design to convert non-active 

ribose binding protein to triose phosphate isomerase 

was based on 18–22 mutations and exhibited a 105–

106-fold activity enhancement. Unfortunately, the 

success of computational models is often limited to 

well-understood reactions and enzymes. 
 

IV. DIRECT EVOLUTION 
 

      In direct evolution there is no need of 

understanding the enzyme 3D structure and 

interaction between enzyme and substrate. Direct 

evolution utilizes the DNA techniques such as error-

prone PCR and DNA shuffling techniques to 

randomly generate a library of large number of 

variants    (Table 2). Major challenge of this method 

is developing tools to accurately evaluate and select 

high-performance mutants generated by recombinant 

DNA techniques [24]. Screening usually involves 

CMC-Congored staining or incorporation of 
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chromogenic or flurogenic substrates. In direct 

evolution larger the gene library variants, larger the 

chance of mutants with desired property. 
V. CLONING AND EXPRESSION 

 

         Many fungal and bacterial cellulase have been 

characterized and their genes have been cloned [34]. 

Cloning and expression of cellulase gene in 

heterologous host is based on the facts that cellulase 

genes from eukaryotic fungal hosts cannot rely on 

direct expression in a prokaryotic cell because of the 

differences in the translation mechanism in the two 

groups and since the eukaryotic genomes are much 

larger than those of prokaryotes, pBR322 based 

vectors cannot give satisfactory results. The 

recombinant cellulolytic strategy for organism 

development is based on non-cellulolytic 

microorganisms having excellent product formation 

properties and involves heterologous expression of a 

functional cellulase system. Such heterologous 

expression has been undertaken for a variety of 

purposes. Main hetrologous expression systems were 

Zymomonas mobilis and Sachromyces cerevisiae. 

List of cellulase genes and their enzymes are listed in 

Table 3. 

 

Table 1: Rational design for cellulase improvement 

Strain Enzyme Method Altered property Reference 

Bacillus sp. KSM 330 EndoK  SDM  Decrease inactivity to CMC [8] 

A. cellulolyticus Endo  SDM Type of products Released  [9] 

C. cellulovorans Endo CBDE Soluble form CBD [10] 

Bacillus sp. KSM 64 Endo SDM  Thermostability Increased [11] 

T. maritime Endo  SDM, CBDE  
Incresed (enzyme activity, pH 

tolerance, activity to Avicel) 
[12] 

T. fusca Endo   SDM  Incresed CMCase activity  [13] 

C. fimi  Endo  
Surface residue 

replacement 
Change in pH tolerance [14] 

C. thermocellum  Endo(Cel8A) 
Consensus 

Mutagenesis 
Thermostability [15] 

C. thermocellum Endo(Cel A) 
Saturation 

mutagenesis  
Incresed half life [16] 

B. subtilis JA18  Endo  
C-terminal 

deletion 
Half life increased [17] 

P. polymyxa  Blg  SDM  Thermostability [18] 

T. aurantiacus  Endo  SDM  Hydrolytic activity  [19] 

Agrobacterium sp. Blg 
Codon 

optimization 
Expression level [20] 

Aspergillus sp.                    
Endo, β -

glucosidase                                                              

Cyclic  

mutagenesis 
Expression level                               [21] 

P.piceum 
Exo, β -

glucosidase 

Single point 

mutation   
Thermostability [22] 

T. maritima                  Endo(Cel12B)   SDM                          Thermostability                                 [23] 

*Endo, Endoglucanase; Exo, Exoglucanase; SDM, Site directed mutagenesis; CBDE, cellulose binding domain 

engineering 
 

Table 2 Direct evolution for cellulase improvement 

Strain Enzyme Method Altered property Reference 

B. subtilis Endo DNA shuffling Activity [25] 

C. cellulovorans Endo DNA recombination Thermal stability [26] 

Agrobacterium sp. β-glucosidase error prone PCR Activity [27] 

B. subtilis Endo 
error prone  

PCR DNA shuffling 

Activity  

Thermostability 
[28] 

P. furiosus β-glucosidase DNA shuffling Cold adaption [29] 

P. polymyxa β-glucosidase 
error prone PCR+  

DNA shuffling  
Thermal stability [30] 

T. fusca β-glucosidase DNA shuffling 
Thermal stability SDM+ 

Saturation mutagenesis 
[31] 

C.phytofermentans Endo   ND 
Enhanced hydrolytic                              

performance 
[32] 

T. reesei       Endo   Mutagenesis Thermostability    [33] 
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Table 3 List of cellulase genes and their enzymes 

Strain  Gene  Enzyme 
Size 

(kDa) 
pH 

Temp 

(°C) 
Host Reference 

Bacillus sp. N4 PNK-1  CMCase 50 
5-

10.9 
60 E. coli  [35] 

B. subtilis Endo CMCase 33 5.5 60 B. megaterium [36] 

P. fluorescens 

var. cellulosa 
eglX Endo ND ND ND Z. mobilis [37] 

C. fimi  exg Exo 116 12 
60-75

  
S. cerevisiae [38] 

E. chrysanthemi celZ  Endo 45 ND ND Z. mobilis [39] 

B. polymyxa+ 

B. circulans  
celB Endo  44 ND ND E.coli  [40] 

B. lautus celB Endo  56 ND ND B. subtilis [41] 

Bacillus sp.KSM330 celA Endo 
51.8

8 
ND ND E. coli  [42] 

Bacillus sp. D04 cel Endo+Exo 55 ND ND - [16] 

B. subtilis CMCase CMCase 36 ND 
ND

  
B. subtilis [43] 

Bacillus sp. BP23 celA  Endo  44.8 4.0 40 E. coli  [44] 

B. subtilis celR  Endo+Cbhase 12.9 ND 
ND

  
E. coli  [45] 

B. pumilus EglA  Endo  71.3 5-8 60 E. coli [46] 

C. biazotea 
bglA+BglB+ 

BglC 
β-glucosidase ND ND ND S. cerevisiae [47] 

Paenibacillus sp. BP23 celB Endo  
106.

9 
5.5 53 E. coli  [48] 

E. chrysanthemi celY+ celZ Endo  23.6 ND ND Klebsiella [49] 

A. acidocaldarius celA  Endo 30 5.5 70 E. coli [50] 

A. acidocaldarius celB Endo  100 4 80 E. coli  [51] 

C. biazotea  bgl β-glucosidase ND ND ND E. coli  [52] 

C. flavigena  celcflB  Endo  58 ND 
ND

  
E. coli  [53] 

Paenibacillus sp. BP23 cel48C  Exo 118 6 48 E. coli  [54] 

B. licheniformis cel12A  Endo 
29.0

67 
ND ND E. coli  [55] 

B. licheniformis celW  Endo 55 6 60 E. coli  [56] 

B. licheniformis cel5A  Endo  62 6 65 E. coli  [26] 

B. subtilis celDR  Endo  55 ND 
50

  
E. coli  [57] 

B. subtilis celI15  Endo  52 6 60 E. coli  [58] 

A. cellulolyticus GH12+ E1 Endo  ND ND 
ND

  
Z. mobilis [59] 

Pseudomonas sp. 

BME14 
cel9p  Endo  60 6.5 35 E. coli  [60] 

M. thermophila  MtEG7a    Endo                65         ND       ND    P. pastoris    [61] 

B. subtilis JS2004                  ND   Endo               63     9     50                  E. coli [62] 

B. subtilis IARI-SP-1             ND     Endo                55                  8      50-60              E. coli [63] 

T. reesei                                  
EG2 Endo 51 

ND       ND Y. lipolytica [64] 
CBH   Exo   62 

T.halotolerans YIM 

90462      
thcel6A      Endo 45.9                  8.5          55                -                         [65] 

Paenibacillus sp.                    EG5C   Endo                63.5               5        40                  E. coli [66] 

B. subtilis UMC7                    EG1 Endo                56                  6        60                 E. coli  [67] 

T. reesei TrEGI                        Cel7B      Endo               46         ND         50         S. cerevisiae [31] 

C. thermocellum CenC          Endo              
137.

11               
6        70               E. coli [67] 

Actinomyces sp.                        EG1 Endo               57.1               6    55               E. coli     [68] 

Endo, Endoglucanase; Exo, Exoglucanase; ND, not determined  
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VI. CONCLUSION 

 

       The mixture of cellulase, hemicellulase and 

pectinase or their individual components have wide 

range of application in research. These enzymes are 

involved in plant defence and hence, have wide range 

of applications in agriculture. Cellulose binding 

domains (CBD) of cellulase have been successfully 

used as affinity tags for the purification and 

immobilization of proteins [64]. Biotinylated CBDs 

have been successfully used for the purification of 

antibodies [65].  

Unutilized celluloses generated from forest, 

agricultural fields and agroindustries cause 

environmental pollution. Cellulase enzymes play an 

important role in degrading cellulosic waste materials. 

Cellulosic wastes have been utilized for the 

preparation of valuable products such as sugars, 

enzymes, biofuels, chemicals and improved animal 

feeds and human nutrients [66]-[68]. 
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